Please wait a minute...
 
Remote Sensing for Natural Resources    2022, Vol. 34 Issue (2) : 121-127     DOI: 10.6046/zrzyyg.2021209
|
Thick cloud removal of remote sensing images based on multi-reference image information fusion
JIANG Sili(), HUANG Wei, HUANG Rui
School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China
Download: PDF(3557 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The cloud removal of remote sensing images is very important in the processing and analysis of remote sensing images and plays a crucial role in the subsequent image information extraction and other operations. Aiming at the high-quality requirements and low applicability of the reconstructed images in the cloud removal of multi-temporal remote sensing image fusion, a thick cloud removal algorithm based on one or more reference images was proposed, mainly including a selection of reference image, radiometric normalization, multi-temporal image fusion, and Poisson image editing. Firstly, the reference image was selected according to the image masking and the principal component information, and the radiometric normalization of the multi-source remote sensing image was carried out to preserve the change of ground feature information. Then, the image was fused based on the selective multi-source total variation model, and the boundary gradient discontinuity after image fusion was reduced by Poisson image editing. The experimental results show that the proposed method can effectively remove clouds from multi-source remote sensing images with thick clouds and different quality, and obtain higher image detail precision than traditional methods.

Keywords thick cloud removal      reference image      radiometric normalization      multi-temporal      selective multi-source total variation     
ZTFLH:  TP79  
Issue Date: 20 June 2022
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Sili JIANG
Wei HUANG
Rui HUANG
Cite this article:   
Sili JIANG,Wei HUANG,Rui HUANG. Thick cloud removal of remote sensing images based on multi-reference image information fusion[J]. Remote Sensing for Natural Resources, 2022, 34(2): 121-127.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2021209     OR     https://www.gtzyyg.com/EN/Y2022/V34/I2/121
Fig.1  Cloud removal flow chart of multi-temporal image fusion based on reference image
Fig.2-1  Selection of reference image
Fig.2-2  Selection of reference image
地物类型 影像
类型
影像1 影像2 影像3
山区、
城市
原始影像
重建结果
河流、城市道路 原始影像
重建结果
Tab.1  Reconstruction results of mountain area, city, river, road and other ground features
指标 第一组影像1 第一组影像2 第一组影像3 第二组影像1 第二组影像2 第二组影像3
SSIM 0.996 8 0.997 9 0.999 8 0.927 5 0.999 8 0.857 4
PSNR 36.129 6 31.697 9 33.191 6 35.766 6 34.508 9 30.673 6
Tab.2  Quantitative index comparison based on the output results of each original image
地物类型 影像 影像1 影像2 影像3
山脉、城
市道路
参考影像
SMTV SPA-GAN 基于参考影像1
的重建结果
重建结果
城市道
路、河流
参考影像 影像1 影像2 影像3
重建结果 SMTV SPA-GAN 基于参考影像2
的重建结果
平原 参考影像 影像1 影像2 影像3
重建结果 SMTV SPA-GAN 基于参考影像3
的重建结果
Tab.3  Comparation of reconstruction results of mountain area, city, river, road and other ground features
方法 第一组 第二组 第三组
PSNR SSIM PSNR SSIM PSNR SSIM
SMTV 26.978 9 0.892 6 40.041 9 0.846 9 33.950 7 0.841 7
SPA-Net 27.017 2 0.799 5 13.970 2 0.699 1 32.104 2 0.738 8
本文算法 27.323 9 0.944 9 41.646 4 0.925 3 37.748 8 0.944 5
Tab.4  Comparison of PSNR and SSIM values of different algorithms
[1] 郭华东. 雷达对地观测理论与应用[M]. 北京: 科学出版社, 2000:15-20.
[1] Guo H D. Radar for earth observation:Theory and applications[M]. Beijing: Science Press, 2000:15-20.
[2] Shen H, Li X, Cheng Q, et al. Missing information reconstruction of remote sensing data:A technical review[J]. IEEE Geoscience & Remote Sensing Magazine, 2015, 3(3):61-85.
[3] Rossi R E, Dungan J L, Beck L R. Kriging in the shadows:Geostatistical interpolation for remote sensing[J]. Remote Sensing of Environment, 1994, 49(1):32-40.
doi: 10.1016/0034-4257(94)90057-4 url: https://linkinghub.elsevier.com/retrieve/pii/0034425794900574
[4] Meer F V D. Remote-sensing image analysis and geostatistics[J]. International Journal of Remote Sensing, 2012, 33(17-18):5644-5676.
doi: 10.1080/01431161.2012.666363 url: https://www.tandfonline.com/doi/full/10.1080/01431161.2012.666363
[5] He K, Sun J. Image completion approaches using the statistics of similar patches[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(12):2423-2435.
doi: 10.1109/TPAMI.2014.2330611 url: http://ieeexplore.ieee.org/document/6853394/
[6] Guillemot C, Le M O, et al. Image inpainting:Overview and recent advances[J]. IEEE Signal Processing Magazine, 2013, 31(1):127-144.
doi: 10.1109/MSP.2013.2273004 url: http://ieeexplore.ieee.org/document/6678248/
[7] Ng K P, Yuan Q, Yan L, et al. An adaptive weighted tensor completion method for the recovery of remote sensing images with missing data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(6):3367-3381.
doi: 10.1109/TGRS.2017.2670021 url: http://ieeexplore.ieee.org/document/7878527/
[8] Shen H, Li H, Yan Q, et al. An effective thin cloud removal procedure for visible remote sensing images[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2014, 96:224-235.
[9] Lv H, Wang Y, Shen Y. An empirical and radiative transfer model based algorithm to remove thin clouds in visible bands[J]. Remote Sensing of Environment, 2016, 179:183-195.
doi: 10.1016/j.rse.2016.03.034 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425716301286
[10] Xu M, Jia X, Pickering M, et al. Thin cloud removal from optical remote sensing images using the noise-adjusted principal components transform[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 149(MAR.):215-225.
doi: 10.1016/j.isprsjprs.2019.01.025 url: https://linkinghub.elsevier.com/retrieve/pii/S0924271619300334
[11] Chen J, Zhu X, Vogelmann J E, et al. A simple and effective method for filling gaps in Landsat ETM+ SLC-off images[J]. Remote Sensing of Environment, 2011, 115(4):1053-1064.
doi: 10.1016/j.rse.2010.12.010 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425710003482
[12] Chen B, Bo H, Chen L, et al. Spatially and temporally weighted regression:A novel method to produce continuous cloud-free Landsat imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 55(1):27-37.
doi: 10.1109/TGRS.2016.2580576 url: http://ieeexplore.ieee.org/document/7582449/
[13] Zhang Y, Wen F, Gao Z, et al. A coarse-to-fine framework for cloud removal in remote sensing image sequence[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019:5963-5974.
[14] Zeng C, Shen H, Zhang L. Recovering missing pixels for Landsat ETM+ SLC-off imagery using multi-temporal regression analysis and a regularization method[J]. Remote Sensing of Environment, 2013, 131:182-194.
doi: 10.1016/j.rse.2012.12.012 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425712004786
[15] Li X, Shen H, Zhang L, et al. Recovering quantitative remote sensing products contaminated by thick clouds and shadows using multitemporal dictionary learning[J]. Geoscience & Remote Sensing, 2014, 52(11):7086-7098.
[16] Zhang Q, Yuan Q, Li J, et al. Cloud and shadow removal for sentinel-2 by progressively spatiotemporal patch group learning[C]// IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium.IEEE, 2019:775-778.
[17] 戴昌达, 雷莉萍. TM图像的光谱信息特征与最佳波段组合[J]. 环境遥感, 1989, 4(4):48-58.
[17] Dai C D, Lei L P. The information characteristics of thematic mapper data and the optimal band combination[J]. Remote Sensing of Environment China, 1989, 4(4):48-58.
[18] Zhu Z, Woodcock C E. Automated cloud,cloud shadow,and snow detection in multitemporal Landsat data:An algorithm designed specifically for monitoring land cover change[J]. Remote Sensing of Environment, 2014, 152:217-234.
doi: 10.1016/j.rse.2014.06.012 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425714002259
[19] 余晓敏, 邹勤. 多时相遥感影像辐射归一化方法综述[J]. 测绘与空间地理信息, 2012, 35(6):19-23.
[19] Yu X M, Zou Q. Methods of radiometric normalization for multi-temporal remote sensing images:A review[J]. Geometrics and Spatial Information Technology, 2012, 35(6):19-23.
[20] Turner M G, Gardner R H, O’Neill R V. Landscape ecology in theory and practice[M]. New York: Springer, 2001:108-125.
[21] 邵艳坡, 洪友堂. 遥感影像相对辐射校正的PIF方法[J]. 国土资源遥感, 2017, 29(1):7-13.doi: 10.6046/gtzyyg.2017.01.02.
doi: 10.6046/gtzyyg.2017.01.02
[21] Shao Y P, Hong Y T. PIF method for relative radiometric correction of remote sensing images[J]. Remote Sensing for Land and Resources, 2017, 29(1):7-13.doi: 10.6046/gtzyyg.2017.01.02.
doi: 10.6046/gtzyyg.2017.01.02
[22] Tierney S, Guo Y, Gao J. Selective multi-source total variation image restoration[C]// 2015 International Conference on Digital Image Computing: Techniquesand Applications (DICTA).IEEE, 2015:1-8.
[23] Lin Z, Liu R, Su Z. Linearized alternating direction method with adaptive penalty for low-rank representation[J]. Advances in Neural Information Processing Systems, 2011:612-620.
[24] Zuo W, Lin Z. A generalized accelerated proximal gradient approach for total-variation-based image restoration[J]. IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society, 2011, 20(10):2748-2759.
doi: 10.1109/TIP.2011.2131665 url: http://ieeexplore.ieee.org/document/5738340/
[25] Pérez P, Gangnet M, Blake A. Poisson image editing[J]. ACM Transactions on Graphics, 2003, 22(3):313-318.
doi: 10.1145/882262.882269 url: https://dl.acm.org/doi/10.1145/882262.882269
[26] Pan H. Cloud removal for remote sensing imagery via spatial attention generative adversarial network[J/OL].(2020-11-14)[2020-09-28]. https://arxiv.org/abs/2009.13015.
url: https://arxiv.org/abs/2009.13015
[1] Xianyu GUO, Kun LI, Zhiyong WANG, Hongyu LI, Zhi YANG. Fine classification of rice with multi-temporal compact polarimetric SAR based on SVM+SFS strategy[J]. Remote Sensing for Land & Resources, 2018, 30(4): 20-27.
[2] Juan XUE, Linfeng YU, Qinan LIN, Guang LIU, Huaguo HUANG. Using Sentinel-1 multi-temporal InSAR data to monitor the damage degree of shoot beetle in Yunnan pine forest[J]. Remote Sensing for Land & Resources, 2018, 30(4): 108-114.
[3] ZHANG Zhaoying, LU Yicen, WU Guozhou, WANG Yongli. Retrieval of precipitation for grassland based on the multi-temporal Sentinel-1 SAR data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 156-160.
[4] ZHOU Xiaoyu, CHEN Fulong, JIANG Aihui. SVM-based forest mapping of Wolong Giant Panda Habitat using SAR data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 85-91.
[5] SHAO Yanpo, HONG Youtang. PIF method for relative radiometric correction of remote sensing images[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 7-13.
[6] GUO Hongyan, ZOU Liqun, ZHANG Youyan, LIU Yang, DONG Wentong, ZHOU Hongying. Data management of multi-temporal images for remote sensing information services in oil and gas application[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(2): 188-192.
[7] XU Chao, ZHAN Jinrui, PAN Yaozhong, ZHU Wenquan. Extraction of cropland information based on multi-temporal TM images[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(4): 166-173.
[8] ZHU Yan, ZHANG Zhi, ZHANG Qin, LIU Feng-Mei, LIU Wen-Ting. A Study of Relative Radiometric Normalization for Dynamic Monitoring of Environment Impacts of Mining Activities[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(3): 47-50.
[9] LI Min-Guang, LI Ying-Cheng, XUE Yan-Li, YE Dong-Mei. A Discussion on an Object-oriented Approach to Island Recognition Based
on Multi-source and Multi-temporal Remotely Sensed Data
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(1): 65-68.
[10] JIA Shen-Yue, XIAO Peng-Feng. THE MONITORING OF LAKE CHANGE IN SOUTH QIANGTANG AREA OF QINGHAI-TIBET PLATEAU USING MULTI-TEMPORAL TUPU[J]. REMOTE SENSING FOR LAND & RESOURCES, 2009, 21(4): 78-81.
[11] JIN Bao-Shi, ZHOU Bao-Hua. MULTI-TEMPORAL DYNAMIC CHANGE OF THE LAKE WATER AREA IN ANQING ALONG THE YANGTZE RIVER IN THE PAST TWENTY YEARS[J]. REMOTE SENSING FOR LAND & RESOURCES, 2008, 20(3): 74-77.
[12] WANG Ping, LIU Shao-Feng. THE DETECTION OF REE MINE EXPLOITATION SITE CHANGE
BASED ON MULTI-TEMPORAL REMOTE SENSING IMAGES
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2007, 19(2): 65-67.
[13] XU Yi-Xiang, ZHU Zi-Hao, LIU Ying-Yu. DEVELOPING TECHNIQUE FOR THE DETECTION AND
REMOVAL OF CLOUD AND HAZE IN SATELLITE IMAGES
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2006, 18(3): 23-28.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech