Please wait a minute...
 
Remote Sensing for Land & Resources    2018, Vol. 30 Issue (4) : 108-114     DOI: 10.6046/gtzyyg.2018.04.17
|
Using Sentinel-1 multi-temporal InSAR data to monitor the damage degree of shoot beetle in Yunnan pine forest
Juan XUE1, Linfeng YU1, Qinan LIN1, Guang LIU2, Huaguo HUANG1()
1. Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China
2. Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China
Download: PDF(7195 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Forest pests constitute one of the important threats to the healthy growth of forests, and the monitoring of its damage is of great significance to forest protection. In this paper, a method of monitoring the degree of forest pests by using interferometric synthetic aperture Radar (InSAR) is proposed. Xiangyun County of Yunnan Province was selected as the study area and the multi-temporal C-band Sentinel-1 images were applied. Based on the information of Radar backscattering intensity, interference phase and coherence coefficient, the time-varying characteristics of coherence coefficient and backscattering coefficient were analyzed by combining the phenological phase of Yunnan pine and relative humidity in the height of 2 meters. Fusion of multi-temporal data was applied to the classification of health forest and different degrees of damaged forest. Some conclusions have been reached: ① The temporal variation of the backscattering coefficient and the coherence coefficient are related to the phenological phenology of Yunnan pine. ② The correlation between the relative humidity and backscattering coefficient is higher than coherence coefficient, which reaches 0.78 in the mildly damaged forest. ③ Field data validation shows that classification accuracy of the multi-temporal coherence coefficient is higher than the backscattering coefficient, and the descending image has the highest precision which reaches 83.15%. The result shows that the coherence coefficient of C-band SAR time series can effectively identify the problem as to whether the forest is healthy or suffers different degrees of damage. ④ The method has certain advantages in monitoring and classification of forest pests in cloudy areas as well as in further enhancing the capability of remote sensing on monitoring pests.

Keywords multi-temporal InSAR      Yunnan pine forest      pests      classification     
:  TP79  
Corresponding Authors: Huaguo HUANG     E-mail: huaguo_huang@bjfu.edu.cn
Issue Date: 07 December 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Juan XUE
Linfeng YU
Qinan LIN
Guang LIU
Huaguo HUANG
Cite this article:   
Juan XUE,Linfeng YU,Qinan LIN, et al. Using Sentinel-1 multi-temporal InSAR data to monitor the damage degree of shoot beetle in Yunnan pine forest[J]. Remote Sensing for Land & Resources, 2018, 30(4): 108-114.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2018.04.17     OR     https://www.gtzyyg.com/EN/Y2018/V30/I4/108
Fig.1  Geographic location of study area
Fig.2  Intensity and interference image processing results on the May 16th—June 9th, 2015
Fig.3  Variance analysis of single scene image
Fig.4  Time series analysis of SAR parameters
时间 云南松物候期 特点
3月上旬 顶芽萌发期 树液流动,顶芽萌发
4—5月 抽梢期 新梢生长,针叶抽长变绿
7月 针叶生长盛期 枝梢高生长缓慢
9月 营养生长期 高生长、粗生长缓慢
11月—次年2月 休眠期 树液停止流动,生长停止
Tab.1  Phenophase and growth characteristics of Yunnan pine
Fig.5  Correlation analysis between relative humidity and SAR parameters
Fig.6  Classification results
分类方法 健康
林/%
轻度受
害林/%
重度受
害林/%
总精
度/%
Kappa
系数
相干
系数
升轨 92.59 26.92 91.67 73.03 0.579 4
降轨 100 42.31 100 83.15 0.739 9
后向散
射系数
升轨 100 26.92 80.65 70.79 0.556 5
降轨 5.88 55.56 47.22 57.30 0.353 3
Tab.2  Accuracy validation of classification results
[1] 吴柳萍, 纪志荣, 连素兰 , 等. 福建省森林病虫害发生风险的概率分析[J]. 森林与环境学报, 2017,37(1):95-101.
doi: 10.13324/j.cnki.jfcf.2017.01.015 url: http://www.cqvip.com/QK/96406A/201701/671115374.html
[1] Wu L P, Ji Z R, Lian S L , et al. Probability analysis of forest pests occurring risk in Fujian Province[J]. Journal of Forest and Environment, 2017,37(1):95-101.
[2] 张衡, 潘洁, 廖振峰 . 森林病虫害高光谱遥感监测的研究进展[J]. 中国森林病虫, 2014,33(2):26-30.
[2] Zhang H, Pan J, Liao Z F . A review of hyperspectral remote sensing monitoring of the forest pests[J]. Forest Pest and Disease, 2014,33(2):26-30.
[3] 王植, 曹均, 曹庆昌 , 等. 高光谱遥感监测板栗病虫害的可行性初探[J]. 中国农学通报, 2010,26(13):380-384.
url: http://d.wanfangdata.com.cn/Periodical/zgnxtb201013082
[3] Wang Z, Cao J, Cao Q C , et al. Feasibility of monitoring chestnut diseases and pests with hyper spectral remote sensing[J]. Chinese Agricultural Science Bulletin, 2010,26(13):380-384.
[4] 王晓堂 . 基于高光谱的松萎蔫病动态变化的研究[D]. 南京:南京林业大学, 2011.
[4] Wang X T . Research on Dynamie Changes of Pine Wilt Disease Based on Hyperspectral[D]. Nanjing:Nanjing Forestry University, 2011.
[5] 王馨爽, 陈尔学, 李增元 , 等. 多时相双极化SAR影像林地类型分类方法[J]. 林业科学, 2014,50(3):83-91.
doi: 10.11707/j.1001-7488.20140312
[5] Wang X S, Chen E X, Li Z Y , et al. Multi-temporal and dual-polarization SAR for forest land type classification[J].Scientia Sil-vae Sinicae. 2014,50(3):83-91
[6] 彭立, 杨武年, 黄瑾 . 川西高原多时相干涉雷达土地覆盖分类研究[J]. 西南大学学报(自然科学版), 2016,38(5):125-132.
doi: 10.13718/j.cnki.xdzk.2016.05.021 url: http://d.wanfangdata.com.cn/Periodical/xnnydxxb201605021
[6] Peng L, Yang W N, Huang J . Study of land cover classification using multi-temporal InSAR data in west plateau of Sichuan[J]. Journal of Southwest University(Natural Science Edition), 2016,38(5):125-132.
[7] 肖伟山 . 双频雷达后向散射和相干性分析及土地利用覆盖分类应用[D]. 福建:福州大学, 2010.
[7] Xiao W S . Dual-band SAR Backscatter and Coherence Analysis and Applications on Land Use/Cover Classification[D]. Fujian:Fuzhou University, 2010.
[8] 叶辉 . 光照、温度对纵坑切梢小蠹起飞行为的影响[J]. 昆虫知识, 2000,37(6):342-344.
doi: 10.3969/j.issn.0452-8255.2000.06.007 url: http://d.wanfangdata.com.cn/Periodical/kczs200006007
[8] Ye H . The influence of temperature and light on the taking-off of Tomicus piniperda[J]. Entomological Knowledge, 2000,37(6):342-344.
[9] 路荣春 . 云南纵坑切梢小蠹和横坑切梢小蠹生态学的研究及其有效引诱物质的探索[D]. 北京:北京林业大学, 2008.
[9] Lu R C . Study on the Ecology of Tomicus Yunnanensis and Tominus Minor(Coleoptera: Scolytidae)and Their Kairomones[D]. Beijing:Beijing Forestry University, 2008.
[10] 李燕 . 云南玉溪松小蠹虫成灾原因及防治对策[J]. 林业资源管理, 2013,35(3):40-42.
doi: 10.3969/j.issn.1002-6622.2013.03.010 url: http://www.cqvip.com/QK/98280X/201303/46975297.html
[10] Li Y . Causes of Tomicus piniperda L.disaster in Yuxi of Yunnan Province and countermeasures of prevention and control[J]. Forest Resources Management, 2013,35(3):40-42.
[11] 曾玲方, 李霖, 万丽华 . 基于Sentinel-1卫星SAR数据的洪水淹没范围快速提取[J]. 地理信息世界, 2015,22(5):100-103,107.
doi: 10.3969/j.issn.1672-1586.2015.05.020 url: http://www.cqvip.com/QK/91238A/201505/67728275504849534853485050.html
[11] Zeng L F, Li L, Wang L H . SAR-based fast flood mapping using Sentinel-1 imagery[J]. Geomatics World, 2015,22(5):100-103,107.
[12] Ardhuin F, Collard F, Chapron B , et al. Estimates of ocean wave heights and attenuation in sea ice using the SAR wave mode on Sentinel-1A[J]. Geophysical Research Letters, 2015,42(7):2317-2325.
doi: 10.1002/2014GL062940 url: http://doi.wiley.com/10.1002/2014GL062940
[13] Wang X, Ge L L, Li X J . Pasture monitoring using SAR with COSMO-SkyMed,ENVISAT ASAR,and ALOS PALSAR in Otway,Australia[J]. Remote Sensing, 2013,5(7), 3611-3636.
doi: 10.3390/rs5073611 url: http://www.mdpi.com/2072-4292/5/7/3611
[14] 杨小勇 . 方差分析法浅析——单因素的方差分析[J]. 实验科学与技术, 2013,11(1):41-43.
doi: 10.3969/j.issn.1672-4550.2013.01.015 url: http://d.wanfangdata.com.cn/Periodical/sykxyjs201301015
[14] Yang X Y . Discussion of variance analysis:The single factor variance analysis[J]. Experiment Science and Technology, 2013,11(1):41-43.
[15] 许章华, 刘健, 陈崇成 , 等. 松毛虫危害下的马尾松林冠层光谱特征可辨性分析[J]. 国土资源遥感, 2016,28(2):41-47.doi: 10.6046/gtzyyg.2016.02.07.
doi: 10.6046/gtzyyg.2016.02.07 url: http://d.wanfangdata.com.cn/Periodical/gtzyyg201602007
[15] Xu Z H, Liu J, Chen C C , et al. Canopy spectral characteristics distinguishability analysis of Pinus massoniana forests with Dendrolimus punctatus Walker damage[J]. Remote Sensing for Land and Resources, 2016,28(2):41-47.doi: 10.6046/gtzyyg.2016.02.07.
[1] SHI Feifei, GAO Xiaohong, XIAO Jianshe, LI Hongda, LI Runxiang, ZHANG Hao. Classification of wolfberry planting areas based on ensemble learning and multi-temporal remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(1): 115-126.
[2] WU Linlin, LI Xiaoyan, MAO Dehua, WANG Zongming. Urban land use classification based on remote sensing and multi-source geographic data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 127-134.
[3] LI Yuan, WU Lin, QI Wenwen, GUO Zhengwei, LI Ning. A SAR image classification method based on an improved OGMRF-RC model[J]. Remote Sensing for Natural Resources, 2021, 33(4): 98-104.
[4] FAN Yinglin, LOU Debo, ZHANG Changqing, WEI Yingjuan, JIA Fudong. Information extraction technologies of iron mine tailings based on object-oriented classification: A case study of Beijing-2 remote sensing images of the Qianxi Area, Hebei Province[J]. Remote Sensing for Natural Resources, 2021, 33(4): 153-161.
[5] WANG Rong, ZHAO Hongli, JIANG Yunzhong, HE Yi, DUAN Hao. Application and analyses of texture features based on GF-1 WFV images in monthly information extraction of crops[J]. Remote Sensing for Natural Resources, 2021, 33(3): 72-79.
[6] JIANG Xiao, ZHONG Chang, LIAN Zheng, WU Liangting, SHAO Zhitao. Research progress on classification criterion of geological information products based on satellite remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(3): 279-283.
[7] BAI Junlong, WANG Zhangqiong, YAN Haitao. A K-means clustering-guided threshold-based approach to classifying UAV remote sensed images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 114-120.
[8] LING Xiao, LIU Jiamei, WANG Tao, ZHU Yueqin, YUAN Lingling, CHEN Yangyang. Application of information value model based on symmetrical factors classification method in landslide hazard assessment[J]. Remote Sensing for Land & Resources, 2021, 33(2): 172-181.
[9] HAN Yanling, CUI Pengxia, YANG Shuhu, LIU Yekun, WANG Jing, ZHANG Yun. Classification of hyperspectral image based on feature fusion of residual network[J]. Remote Sensing for Land & Resources, 2021, 33(2): 11-19.
[10] MENG Qing, BAI Hongying, ZHAO Ting, GUO Shaozhuang, QI Guizeng. The eco-barrier effect of Qinling Mountain on aerosols[J]. Remote Sensing for Land & Resources, 2021, 33(1): 240-248.
[11] XU Yun, XU Aiwen. Classification and detection of cloud, snow and fog in remote sensing images based on random forest[J]. Remote Sensing for Land & Resources, 2021, 33(1): 96-101.
[12] ZHANG Li, XIE Yanan, QU Chenyang, WANG Mingquan, CHANG Zheng, WANG Maohua. Estimation of electric power consumption using nighttime light remote sensing data based on K-Means city classification algorithm[J]. Remote Sensing for Land & Resources, 2020, 32(4): 182-189.
[13] WANG Dejun, JIANG Qigang, LI Yuanhua, GUAN Haitao, ZHAO Pengfei, XI Jing. Land use classification of farming areas based on time series Sentinel-2A/B data and random forest algorithm[J]. Remote Sensing for Land & Resources, 2020, 32(4): 236-243.
[14] WANG Yuefeng, WU Huizhi, HE Shujun, HUANG Di, BAI Chaojun. Method research of intelligentized extraction of natural resources information from Shihe District,Xinyang City,Henan Province[J]. Remote Sensing for Land & Resources, 2020, 32(4): 244-250.
[15] SUN Ke. Remote sensing image classification based on super pixel and peak density[J]. Remote Sensing for Land & Resources, 2020, 32(4): 41-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech