Please wait a minute...
 
Remote Sensing for Natural Resources    2023, Vol. 35 Issue (3) : 221-229     DOI: 10.6046/zrzyyg.2022239
|
Monitoring water level changes in the middle and lower reaches of the Yangtze River using Sentinel-3A satellite altimetry data
LOU Yanhan1,2,3(), LIAO Jingjuan1,2(), CHEN Jiaming1,4
1. Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China
2. International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China
3. University of Chinese Academy of Sciences, Beijing 100049, China
4. Institute of Geodesy and Geoinformation, University of Bonn, Bonn 53115, Germany
Download: PDF(5019 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

River levels serve as a critical parameter for understanding the changes in water cycles and water resources. An advanced Radar altimeter is a favorable tool for extracting the changes in river levels. This study aims to verify the ability of the Sentinel-3A/SRAL Radar altimeter to monitor river levels and improve the extraction accuracy of this Radar altimeter. With the main streams in the middle and lower reaches of the Yangtze River as the study area, this study conducted waveform retracking for the Sentinel-3A/SRAL L2 data using the center-of-gravity offset method, the primary peak threshold retracking algorithm (thresholds: 50% and 80%), the primary waveform centroid retracking algorithm, and the multiple-echo peak consistency retracking algorithm. Then, this study extracted the river levels during 2016—2021 in the study area and obtained the optimal retracking algorithm by comparing the accuracy of different algorithms. Based on the optimal retracking algorithm, this study extracted the water level changes in transit areas of 12 satellite orbits to analyze the water level change patterns. The results show that the center-of-gravity offset method is the optimal retracking algorithm for extracting river levels with the highest accuracy. Compared with the measured water levels, the water levels simulated using the center-of-gravity offset method exhibited the highest correlation coefficient (up to 0.968) and the smallest root mean square error (up to 0.680 m). During 2016—2021, the water levels in the study area generally showed an upward trend, with significant intra-annual seasonal changes.

Keywords Sentinel-3A      waveform classification      waveform retracking      Yangtze River      water level change     
ZTFLH:  TP79  
Issue Date: 19 September 2023
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yanhan LOU
Jingjuan LIAO
Jiaming CHEN
Cite this article:   
Yanhan LOU,Jingjuan LIAO,Jiaming CHEN. Monitoring water level changes in the middle and lower reaches of the Yangtze River using Sentinel-3A satellite altimetry data[J]. Remote Sensing for Natural Resources, 2023, 35(3): 221-229.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2022239     OR     https://www.gtzyyg.com/EN/Y2023/V35/I3/221
Fig.1  Overview of the study area and data coverage of Radar altimeter
Fig.2  Flow chart of the study
Fig.3  Waveform of Radar altimeter
Fig.4  Comparison of retracked gates obtained by five retracking algorithms
Fig.5  Correlation between Sentinel-3A/SRAL altimeter water level retracked by OCOG and in-situ water level
算法 指标 038 089 095 146 152 203 260 266 309 323 360 366
MWaPP R M S E/m 1.545 1.524 1.708 1.695 1.256 1.338 0.872 1.601 1.246 0.553 1.074 1.681
r 0.897 0.915 0.631 0.818 0.937 0.627 0.965 0.686 0.930 0.953 0.901 0.864
d 54 51 42 29 70 45 51 52 60 57 58 53
NPPOR R M S E/m 1.442 1.439 1.630 1.638 1.205 1.389 0.859 1.427 1.261 0.719 1.105 1.475
r 0.924 0.902 0.707 0.882 0.944 0.662 0.965 0.769 0.929 0.937 0.886 0.916
d 60 43 35 34 70 45 47 57 58 58 60 51
NPPTR05 R M S E/m 1.462 1.459 1.730 1.616 1.223 1.605 0.867 1.407 1.284 0.610 1.028 1.630
r 0.921 0.892 0.642 0.892 0.944 0.561 0.963 0.771 0.930 0.950 0.892 0.873
d 60 46 38 35 73 49 49 57 59 58 59 58
NPPTR08 R M S E/m 1.333 1.667 1.714 1.844 1.202 1.572 0.864 1.476 1.255 0.676 1.048 1.579
r 0.934 0.916 0.686 0.868 0.944 0.578 0.964 0.734 0.932 0.930 0.890 0.880
d 58 50 37 38 65 45 48 55 59 57 60 54
OCOG R M S E/m 1.145 1.409 1.469 1.469 1.201 1.197 0.841 1.158 1.126 0.881 0.680 1.565
r 0.952 0.866 0.667 0.891 0.941 0.840 0.968 0.824 0.940 0.893 0.941 0.891
d 61 45 43 47 63 45 45 57 58 58 60 47
Tab.1  Comparison of Sentinel-3A/SRAL altimeter water levels obtained by different re-tracking algorithms and in- situ water level
轨道编号 虚拟水位站点位置 最高水位/m 最高水位日期 最低水位/m 最低水位日期
038 E114°058',N30°253' 28.360 2020-06-28 13.530 2019-11-25
089 E113°333',N29°664' 33.350 2020-06-05 18.811 2017-11-30
095 E114°947',N30°416' 26.175 2020-06-05 19.210 2019-08-13
146 E114°547',N30°666' 28.190 2016-07-09 13.600 2019-12-03
152 E116°063',N29°789' 21.659 2016-07-09 8.420 2019-12-03
203 E115°323',N30°078' 24.328 2020-06-13 18.401 2016-03-27
260 E116°188',N29°827' 22.495 2020-07-14 8.358 2019-12-11
266 E117°654',N30°779' 16.190 2020-07-14 4.620 2019-12-11
309 E112°216',N30°178' 42.111 2020-07-17 30.198 2019-11-25
323 E118°393',N31°556' 12.140 2020-07-18 3.460 2019-12-15
360 E111°652',N30°353' 48.289 2020-08-17 37.929 2018-12-05
366 E113°294',N29°626' 33.408 2020-07-21 18.970 2019-11-21
Tab.2  Locations of virtual water level stations of each track and the highest and lowest water levels from 2016 to 2021
Fig.6  Time series of water level changes in the middle and lower reaches of the Yangtze River from 2016 to 2021
[1] Gao Q, Makhoul E, Escorihuela M J, et al. Analysis of retrackers’ performances and water level retrieval over the Ebro River basin using Sentinel-3[J]. Remote Sensing, 2019, 11(6):718.
doi: 10.3390/rs11060718 url: https://www.mdpi.com/2072-4292/11/6/718
[2] Huang Q, Li X D, Han P F, et al. Validation and application of water levels derived from Sentinel-3A for the Brahmaputra River[J]. Science China-Technological Sciences, 2019, 62(10):1760-1772.
doi: 10.1007/s11431-019-9535-3
[3] Detlef S, Anny C. Satellite altimetry over oceans and land surfaces[M]. Boca Raton: CRC Press, 2017.
[4] Kittel C M M, Jiang L, Tttrup C, et al. Sentinel-3 Radar altimetry for river monitoring:A catchment-scale evaluation of satellite water surface elevation from Sentinel-3A and Sentinel-3B[J]. Hydrology and Earth System Sciences, 2021, 25(1):333-357.
doi: 10.5194/hess-25-333-2021 url: https://hess.copernicus.org/articles/25/333/2021/
[5] 赵云, 廖静娟, 沈国状, 等. 卫星测高数据监测青海湖水位变化[J]. 遥感学报, 2017, 21(4):633-644.
[5] Zhao Y, Liao J J, Shen G Z, et al. Monitoring the water level changes in Qinghai Lake with satellitealtimetry data[J]. Journal of Remote Sensing, 2017, 21(4):633-644.
[6] Hwang C, Guo J Y, Deng X L, et al. Coastal gravity anomalies from retracked geosat/GM altimetry:Improvement,limitation and the role of airborne gravity data[J]. Journal of Geodesy, 2006, 80(4):204-216.
doi: 10.1007/s00190-006-0052-x url: http://link.springer.com/10.1007/s00190-006-0052-x
[7] Bao L F, Lu Y, Wang Y. Improved retracking algorithm for oceanic altimeter waveforms[J]. Progress in Natural Science, 2009, 19(2):195-203.
doi: 10.1016/j.pnsc.2008.06.017 url: https://linkinghub.elsevier.com/retrieve/pii/S1002007108003912
[8] Yang L, Lin M S, Liu Q H, et al. A coastal altimetry retracking strategy based on waveform classification and sub-waveform extraction[J]. International Journal of Remote Sensing, 2012, 33(24):7806-7819.
doi: 10.1080/01431161.2012.701350 url: https://www.tandfonline.com/doi/full/10.1080/01431161.2012.701350
[9] Kleinherenbrink M, Ditmar P G, Lindenbergh R C. Retracking Cryo-sat data in the SARIn mode and robust lake level extraction[J]. Remote Sensing of Environment, 2014, 152:38-50.
doi: 10.1016/j.rse.2014.05.014 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425714002028
[10] Kleinherenbrink M, Lindenbergh R C, Ditmar P G. Monitoring of lake level changes on the Tibetan Plateau and Tian Shan by retracking CryoSat SARIn waveforms[J]. Journal of Hydrology, 2015, 521:119-131.
doi: 10.1016/j.jhydrol.2014.11.063 url: https://linkinghub.elsevier.com/retrieve/pii/S0022169414009858
[11] Jain M, Andersen O B, Dall J, et al. Sea surface height determination in the Arctic using CryoSat-2 SAR data from primary peak empirical retrackers[J]. Advances in Space Research, 2015, 55(1):40-50.
doi: 10.1016/j.asr.2014.09.006 url: https://linkinghub.elsevier.com/retrieve/pii/S0273117714005705
[12] Wingham D J, Rapley C G, Griffiths H. New techniques in satellite altimeter tracking systems[C]// Proceedings of IGARSS.IEEE, 1986, 86:1339-1344.
[13] Davis C H. Growth of the Greenland ice sheet:A performance assessment of altimeter retracking algorithms[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(5):1108-1116.
doi: 10.1109/36.469474 url: http://ieeexplore.ieee.org/document/469474/
[14] Martin T V, Zwally H J, Brenner A C, et al. Analysis and retracking of continental ice sheet Radar altimeter waveforms[J]. Journal of Geophysical Research Oceans, 1983, 88(c3):1608-1616.
[15] Biswas N K, Hossain F, Bonnema M, et al. An altimeter height extraction technique for dynamically changing rivers of South and South-East Asia[J]. Remote Sensing of Environment, 2019, 221:24-37.
doi: 10.1016/j.rse.2018.10.033 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425718304875
[16] 刘琪, 李琼, 魏加华, 等. 星载高度计水位提取方法研究进展[J]. 南水北调与水利科技, 2021, 19(2):281-292.
[16] Liu Q, Li Q, Wei J H, et al. Research progress of water level extraction methods based on satellite altimeter[J]. South-to-North Transfer and Water Science and Technology, 2021, 19(2) :281-292.
[17] Lee H, Shum C K, Yi Y, et al. Laurentia crustal motion observed using TOPEX/POSEIDON Radar altimetry over land[J]. Journal of Geodynamics, 2008, 46(3-5):182-193.
doi: 10.1016/j.jog.2008.05.001 url: https://linkinghub.elsevier.com/retrieve/pii/S0264370708000422
[18] Villadsen H, Deng X, Andersen O B, et al. Improved inland water levels from SAR altimetry using novel empirical and physical retrackers[J]. Journal of Hydrology, 2016, 537:234-247.
doi: 10.1016/j.jhydrol.2016.03.051 url: https://linkinghub.elsevier.com/retrieve/pii/S0022169416301561
[19] Huang Q, Long D, Du M, et al. An improved approach to monitoring Brahmaputra River water levels using retracked altimetry data[J]. Remote Sensing of Environment, 2018, 211:112-28.
doi: 10.1016/j.rse.2018.04.018 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425718301731
[20] 许全喜, 董炳江, 张为. 2020年长江中下游干流河道冲淤变化特点及分析[J]. 人民长江, 2021, 52(12):1-8.
[20] Xu Q X, Dong B J, Zhang W. Characteristics and analysis of erosion and deposition changes in the middle and lower reaches of the Yangtze River in 2020[J]. People’s Yangtze River, 2021, 52(12):1-8.
[21] 廖静娟, 薛辉, 陈嘉明. 卫星测高数据监测青藏高原湖泊2010年—2018年水位变化[J]. 遥感学报, 2020, 24(12):1534-1547.
[21] Liao J J, Xue H, Chen J M. Monitoring lake level changes on the Tibetan Plateau from 2000 to 2018 using satellite altimetry data[J]. Journal of Remote Sensing, 2020, 24(12):1534-1547.
[22] Ayana E K. Validation of Radar altimetry lake level data and it’s application in water resource management[D]. The Netherlands: International Institute for Geo-Information Science and Earth Observation (ITC), 2007.
[23] Arabsahebi R, Voosoghi B, Tourian M J. The inflection-point retracking algorithm:Improved Jason-2 sea surface heights in the Strait of Hormuz[J]. Marine Geodesy, 2018, 41(4):331-352.
doi: 10.1080/01490419.2018.1448029 url: https://www.tandfonline.com/doi/full/10.1080/01490419.2018.1448029
[24] 褚永海, 李建成, 张燕, 等. ENVISAT测高数据波形重跟踪分析研究[J]. 大地测量与地球动力学, 2005, 25(1):76-80.
[24] Chu Y H, Li J C, Zhang Y, et al. Research on waveform re-tracking analysis of ENVISAT altimetry data[J]. Geodesy and Geodynamics, 2005, 25(1):76-80.
[25] Jiang L, Nielsen K, Andersen O B, et al. CryoSat-2 Radar altimetry for monitoring freshwater resources of China[J]. Remote Sensing of Environment, 2017, 200:125-139.
doi: 10.1016/j.rse.2017.08.015 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425717303681
[26] Xue H, Liao J, Zhao L. A modified empirical retracker for lake level estimation using CryoSat-2 SAR in data[J]. Water, 2018, 10(11):1584.
doi: 10.3390/w10111584 url: http://www.mdpi.com/2073-4441/10/11/1584
[27] 莫德丽, 赵银军, 陈国清, 等. 基于主波峰的自适应波形重跟踪算法研究[J]. 大地测量与地球动力学, 2021, 41(10):1051-1056.
[27] Mo D L, Zhao Y J, Chen G Q, et al. Research on adaptive waveform re-tracking algorithm based on main wave crest[J]. Geodesy and Geodynamics, 2021, 41(10):1051-1056.
[1] WEI Haohan, XU Renjie, YANG Qiang, ZHOU Quanping. Variation and effect analysis of the water level of the Taihu Lake based on multi-source satellite altimetry data[J]. Remote Sensing for Natural Resources, 2021, 33(3): 130-137.
[2] Yaqiu YIN, Jinzhong YANG, Jie WANG, Na AN, Yun JIANG. Remote sensing survey of land occupied and damaged by abandoned mines along the Yangtze River Economic Belt and research on ecological remediation countermeasures[J]. Remote Sensing for Land & Resources, 2020, 32(2): 170-176.
[3] SONG Zhi-Hong, CHEN Hua, LI Xian-Qing. The Restoration of Barren Ecosystems and the Construction of Economic Forest in the Yangtze River Delta Economy District[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(s1): 191-193.
[4] YANG Ze-Dong, CHEN You-Ming, HUANG Yan, YANG Yang, WANG Bai-Yan, ZHANG You-Ying. Remote Sensing Survey and Monitoring of Sedimentation and Reclamation of Lakes and Wetlands Along the Yangtze River in Anhui Province[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(s1): 82-86.
[5] CHEN You-Ming, YANG Ze-Dong, HUANG Jie, LIU Tong-Qing, HUANG Yan. Remote Sensing Interpretation of Geomorphic Types and Geomorphic Processes in Yangtze River Basin[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(s1): 98-107.
[6] JIANG Duan-Wu, LI Da-Ming, JIANG Feng, LIU Zhi. A Tentative Analysis of Remote Sensing Interpretational Key for the Neotectonics in Yangtze River Basin[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(s1): 113-117.
[7] HUANG Shu-Chun, LIU Zhi, JIANG Duan-Wu, ZHANG Yuan-Ping.
A Study of Soil Erosion and Its Origin in Yangtze River Basin Based on the Remote Sensing Geological Environment
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(s1): 134-139.
[8] JIN Bao-Shi, ZHOU Bao-Hua. MULTI-TEMPORAL DYNAMIC CHANGE OF THE LAKE WATER AREA IN ANQING ALONG THE YANGTZE RIVER IN THE PAST TWENTY YEARS[J]. REMOTE SENSING FOR LAND & RESOURCES, 2008, 20(3): 74-77.
[9] ZHOU Le-Qun, SUN Chang-An, GAO Gai-Ping, HU Jia-Jun, HU Zong-Yun, YANG Lan. THE REMOTE SENSING  ECOLOGICAL ENVIRONMENT DYNAMIC
MONITORING OF THE THREE GORGES RESERVOIR AREA
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2005, 17(1): 49-52.
[10] ZHANG Zhen-de, HE Yu-hua . THE APPLICATION OF REMOTE SENSING TECHNIQUE TO THE INVESTIGATION OF LARGE-SCALE GEOLOGICAL HAZARDS IN THE THREE GORGES RESERVOIR AREA OF THE YANGTZE RIVER[J]. REMOTE SENSING FOR LAND & RESOURCES, 2003, 15(2): 11-14,26.
[11] LU Jia-ju . REMOTE SENSING ANALYSIS OF WATER QUALITY IN THE NANJING SECTION OF THE YANGTZE RIVER[J]. REMOTE SENSING FOR LAND & RESOURCES, 2002, 14(3): 33-36.
[12] Yang Zedong, Lu Xianzhang . INVESTIGATION OF THE BANK ZONE COLLAPSE AND STABILITY ALONG THE YANGTZE RIVER IN ANHUI PROVINCE BY USING REMOTE SENSING[J]. REMOTE SENSING FOR LAND & RESOURCES, 1998, 10(3): 22-25.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech