Please wait a minute...
 
Remote Sensing for Natural Resources    2025, Vol. 37 Issue (5) : 216-223     DOI: 10.6046/zrzyyg.2024314
|
InSAR-derived coseismic deformation field and seismogenic fault of the M6.2 Jishishan earthquake
XU Yufan1(), LI Sheng1(), CAO Yanbo1, HU Ruifeng2
1. Yunnan Earthquake Agency,Kunming 650051,China
2. Yunnan Geological Survey,Kunming 650051,China
Download: PDF(5397 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

On December 18,2023,a M6.2 earthquake struck Jishishan Bonan,Dongxiang,and Salar Autonomous County,Gansu Province,China,with a maximum seismic intensity of VIII,causing severe environmental damage. This study aims to determine the basic parameters of the seismogenic fault and analyze its movement. To this end,this study,based on the two-pass differential interferometric synthetic aperture radar (D-InSAR) technique,obtained the coseismic deformation field of this earthquake using ascending and descending orbit from the Sentinel-1A satellite,as well as digital elevation model (DEM) data before and after the earthquake. Based on the dislocation theory in a homogeneous elastic half-space (the Okada dislocation model),a mapping model was established to link coseismic deformation and fault movement. The coseismic deformation field was used to fit the seismogenic fault,followed by the inversion for basic parameters of the seismogenic fault and the simulation of fault slip distribution. The results show that the maximum deformation from the ascending orbit data was about 6.65 cm,while that from the descending orbit data was about 7.12 cm. The seismogenic fault exhibited a strike of 308.14°,a dip angle of 61.57°,and a slip angle of 71.42°. Moreover,the fault presented a maximum slip of approximately 0.29 m located approximately 8 m below the surface and a moment magnitude of Mw6.17. The fault is characterized by thrust movement,with a minor left-lateral strike-slip movement. Based on the regional geological structure,the seismogenic fault is speculated to be the southern margin fault of Laji Mountain,with surface rupture caused by the earthquake.

Keywords Jishishan earthquake      coseismic deformation      interferometric synthetic aperture radar (InSAR)      seismogenic fault     
ZTFLH:  TP79  
Issue Date: 28 October 2025
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yufan XU
Sheng LI
Yanbo CAO
Ruifeng HU
Cite this article:   
Yufan XU,Sheng LI,Yanbo CAO, et al. InSAR-derived coseismic deformation field and seismogenic fault of the M6.2 Jishishan earthquake[J]. Remote Sensing for Natural Resources, 2025, 37(5): 216-223.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2024314     OR     https://www.gtzyyg.com/EN/Y2025/V37/I5/216
Fig.1  Background map of active tectonic activity in the Qinghai-Xizang Plateau and Jishishan earthquake region
飞行方向 数据采集时间 时间基
线/d
空间基
线/m
震前 震后
升轨 2023-10-27 2023-12-26 60 65
降轨 2023-12-14 2023-12-26 12 -118
Tab.1  Image acquisition schedule
数据类型 数据来源
SAR影像 欧洲航天局Sentinel-1A
Sentinel-1精轨数据 欧洲航天局
DEM数据 ALOS World DEM
活动断层数据 中国地震灾害防御中心地震活动断层探查数据中心
Tab.2  Data introduction
Fig.2  Schematic diagram of microwave transmission
Fig.3  Technical flowchart
Fig.4  Deformation interferogram
Fig.5  Deformation fiel
Fig.6  Deformation profile
发生时间 数据来源 震级 震源机制解1 震源机制解2 震源球
走向/(°) 倾角/(°) 滑动角/(°) 走向/(°) 倾角/(°) 滑动角/(°)
2023-12-18
23∶59
GCMT 6.1 164 46 122 303 52 62
USGS 5.9 156 28 93 333 28 93
Tab.3  Source mechanism solutions for USGS and GCMT
Fig.7  The fitting results of the second set of fault parameters
Fig.8  Fault slip distribution results
[1] 陆诗铭, 吴中海, 李智超. 2023年12月18日甘肃省积石山6.2级地震的控震构造及特征[J]. 地震科学进展, 2024, 54(1):86-93.
[1] Lu S M, Wu Z H, Li Z C. Seismic structure characteristics of the 18 December 2023 M6.2 Jishishan earthquake,Gansu Province[J]. Progress in Earthquake Sciences, 2024, 54(1):86-93.
[2] 郭祥云, 韩立波, 张旭, 等. 2023年12月18日甘肃积石山6.2级地震震源参数和破裂特征[J]. 地震科学进展, 2024, 54(1):75-85.
[2] Guo X Y, Han L B, Zhang X, et al. Source parameters and rupture characteristics of the M6.2 Jishishan earthquake in Gansu Province on December 18,2023[J]. Progress in Earthquake Sciences, 2024, 54(1):75-85.
[3] 王润妍, 万永革, 宋泽尧, 等. 2023年12月18日甘肃积石山6.2级地震震源机制及其对周围区域的应力影响[J]. 地震, 2024, 44(1):175-184.
[3] Wang R Y, Wan Y G, Song Z Y, et al. Focal mechanism and stress implication on the surrounding region of the Jishishan,Gansu MS 6.2 earthquake on December 18,2023[J]. Earthquake, 2024, 44(1):175-184.
[4] 杨彦明, 苏淑娟. 2023年甘肃积石山MS 6.2地震:一次逆冲为主的浅源强震[J]. 地震, 2024, 44(1):167-174.
[4] Yang Y M, Su S J. The 2023 Jishishan MS 6.2 earthquake in Gansu Province,China:A shallow strong earthquake with thrust-dominated components[J]. Earthquake,2024, 44(1):167-174.
[5] 王勤彩, 罗钧, 陈翰林, 等. 2023年12月18日甘肃积石山6.2级地震震源机制解[J]. 地震, 2024, 44(1):185-188.
[5] Wang Q C, Luo J, Chen H L, et al. Focal mechanism for the December 18,2023,Jishishan MS 6.2 earthquake in Gansu Province[J]. Earthquake, 2024, 44(1):185-188.
[6] 方楠, 孙凯, 黄传超, 等. 联合InSAR和地震波数据反演甘肃积石山MS 6.2地震震源时空破裂过程[J]. 武汉大学学报(信息科学版), 2025, 50(2):333-343.
[6] Fang N, Sun K, Huang C C, et al. Joint inversion of InSAR and seismic data for the kinematic rupture process of the 2023 MS 6.2 Jishishan(Gansu,China) earthquake[J]. Geomatics and Information Science of Wuhan University, 2025, 50(2):333-343.
[7] 杨九元, 温扬茂, 许才军. InSAR观测揭示的2023年甘肃积石山MS 6.2地震发震构造[J]. 武汉大学学报, 2025, 50(2):313-321.
[7] Yang J Y, Wen Y M, Xu C J. Seismogenic fault structure of the 2023 MS 6.2 Jishishan(Gansu,China)earthquake revealed by InSAR observations[J]. Geomatics and Information Science of Wuhan University, 2025, 50(2):313-321.
[8] 张文婷, 季灵运, 陈玉鑫, 等. 2023年甘肃积石山6.2级地震区域地壳形变特征分析[J]. 武汉大学学报(信息科学版), 2025, 50(2):391-403.
[8] Zhang W T, Ji L Y, Chen Y X, et al. Analysis of crustal deformation of the 2023 MS 6.2 Jishishan earthquake in Gansu Province[J]. Geomatics and Information Science of Wuhan University, 2025, 50(2):391-403.
[9] 李雨森, 李为乐, 许强, 等. 2023年积石山MS 6.2级地震InSAR同震形变探测与断层滑动分布反演[J]. 成都理工大学学报(自然科学版), 2024, 51(1):22-32,75.
[9] Li Y S, Li W L, Xu Q, et al. Coseismic deformation and slip distribution of the 2023 Jishishan MS 6.2 earthquake revealed by InSAR observations[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2024, 51(1):22-32,75.
[10] 张军龙, 徐岳仁, 李文巧, 等. 中强地震发震构造标志浅析——以2023年积石山MS 6.2地震为例[J]. 地震, 2024, 44(1):226-234.
[10] Zhang J L, Xu Y R, Li W Q, et al. Analysis of the markers of seismic structures for moderate earthquakes:A case study of the 2023 Jishishan MS 6.2 earthquake[J]. Earthquake, 2024, 44(1):226-234.
[11] Hirose H, Hirahara K, Kimata F, et al. A slow thrust slip event following the two 1996 Hyuganada Earthquakes beneath the Bungo Channel,southwest Japan[J]. Geophysical Research Letters, 1999, 26(21):3237-3240.
[12] Jin Z, Fialko Y, Zubovich A, et al. Lithospheric deformation due to the 2015 M7.2 sarez (Pamir) earthquake constrained by 5 years of space geodetic observations[J]. Journal of Geophysical Research:Solid Earth, 2022, 127(4):e2021JB022461.
[13] Jin Z, Fialko Y. Coseismic and early postseismic deformation due to the 2021 M7.4 Maduo (China) earthquake[J]. Geophysical Research Letters, 2021, 48(21):e2021GL095213.
[14] Massonnet D, Rossi M, Carmona C, et al. The displacement field of the Landers earthquake mapped by radar interferometry[J]. Nature, 1993, 364(6433):138-142.
[15] Zebker H A, Rosen P A, Goldstein R M, et al. On the derivation of coseismic displacement fields using differential radar interferometry:The Landers earthquake[J]. Journal of Geophysical Research:Solid Earth, 1994, 99(B10):19617-19634.
[16] Lakhote A, Thakkar M G, Kandregula R S, et al. Estimation of active surface deformation in the eastern Kachchh region,western India:Application of multi-sensor DInSAR technique[J]. Quaternary International, 2021, 575:130-140.
[17] Carboni F, Porreca M, Valerio E, et al. Surface ruptures and off-fault deformation of the October 2016 central Italy earthquakes from DInSAR data[J]. Scientific Reports, 2022, 12(1):3172.
doi: 10.1038/s41598-022-07068-9 pmid: 35210512
[18] 屈春燕, 左荣虎, 单新建, 等. 尼泊尔MW 7.8地震InSAR同震形变场及断层滑动分布[J]. 地球物理学报, 2017, 60(1):151-162.
doi: 10.6038/cjg20170113
[18] Qu C Y, Zuo R H, Shan X J, et al. Coseismic deformation field of the Nepal MS 8.1 earthquake from Sentinel-1A/InSAR data and fault slip inversion[J]. Chinese Journal of Geophysics, 2017, 60(1):151-162.
[19] 王守文, 季灵运, 朱良玉, 等. 基于InSAR技术监测2021年青海玛多Mw 7.4级地震同震形变场与断层滑动[J]. 地球科学与环境学报, 2022, 44(6):1016-1026.
[19] Wang S W, Ji L Y, Zhu L Y, et al. Co-seismic deformation field and fault slip distribution of the 2021 Maduo Mw 7.4 earthquake in Qinghai,China based on InSAR technology[J]. Journal of Earth Sciences and Environment, 2022, 44(6):1016-1026.
[20] Qiu J, Ji L, Zhu L, et al. The June 2022 Khost earthquake in southeastern Afghanistan:A complicated shallow slip event revealed with InSAR[J]. Geodesy and Geodynamics, 2023, 14(6):559-565.
[21] 刘振江, 韩炳权, 能懿菡, 等. InSAR观测约束下的2023年甘肃积石山地震震源参数及其滑动分布[J]. 武汉大学学报(信息科学版), 2025, 50(2):344-355.
[21] Liu Z J, Han B Q, Nai Y H. Source parameters and slip distribution of the 2023 Mw 6.0 Jishishan(Gansu,China) earthquake constrained by InSAR observations[J]. Geomatics and Information Science of Wuhan University, 2025, 50(2):344-355.
[22] 陈鹏, 邱梁才, 姚宜斌, 等. 基于InSAR和光学影像解译的2023年甘肃积石山MS 6.2震后地表形变和灾害分析[J]. 武汉大学学报(信息科学版), 2025, 50(2):257-270.
[22] Chen P, Qiu L C, Yao Y B, et al. Surface deformation and hazard analysis after the 2023 MS 6.2 earthquake in Jishishan,Gansu Province based on InSAR and optical imagery interpretation[J]. Geomatics and Information Science of Wuhan University, 2025, 50(2):257-270.
[23] 王二七, 张旗, Clark B B. 青海拉鸡山:一个多阶段抬升的构造窗[J]. 地质科学, 2000, 35(4):493-500.
[23] Wang E Q, Zhang Q, Burchfiel C. The lajishan fault belt in Qinghai Province:A multi-staged uplifting structural window[J]. Scientia Geologica Sinica, 2000, 35(4):493-500.
[24] 袁道阳, 张培震, 雷中生, 等. 青海拉脊山断裂带新活动特征的初步研究[J]. 中国地震, 2005, 21(1):93-102.
[24] Yuan D Y, Zhang P Z, Lei Z S, et al. A preliminary study on the new activity features of the Lajishan Mountain fault zone in Qinghai Province[J]. Earthquake Research in China, 2005, 21(1):93-102.
[25] 滕瑞增, 金瑶泉, 李西候, 等. 西秦岭北缘断裂带新活动特征[J]. 西北地震学报, 1994, 16(2):85-90.
[25] Teng R Z, Jin Y Q, Li X H, et al. Recent activity characteristis of the fault zone at northern edge of western Qinling MT[J]. China Earthquake Engineering Journal, 1994, 16(2):85-90.
[26] Tong X, Xu X, Chen S. Coseismic slip model of the 2021 Maduo earthquake,China from sentinel-1 InSAR observation[J]. Remote Sensing, 2022, 14(3):436.
[27] 袁道阳. 青藏高原东北缘晚新生代以来的构造变形特征与时空演化[D]. 北京: 中国地震局地质研究所, 2003.
[27] Yuan D Y. Tectonic deformation features and space-time evolution in northeastern margin of the Qinghai-Tibetan Plateau since the late cenozoic time[D]. Beijing: Institute of Geology,Seismological Bureau of China, 2003.
[1] Dong WANG, Fengbing LAI, Mengyu CHEN, Shujiang CHEN, Tiecheng HUANG, Xiang JIA. Research on coseismic deformation in Ukraine River Valley of Tianshan Mountains based on InSAR technology[J]. Remote Sensing for Land & Resources, 2019, 31(1): 187-194.
[2] Nianqin WANG, Dejing QIAO, Xiyou FU. An analysis of the influence of filtering parameter on the performance of Goldstein InSAR interfergram filter[J]. Remote Sensing for Land & Resources, 2019, 31(1): 117-124.
[3] HONG Shun-Ying, SHEN Xu-Hui, SHAN Xin-Jian, LIU Zhi-Rong, DAI Ya-Qiong, JING Feng.
The Calculation and Analysis of the Co-seismic Deformation Field of Yutian Ms 7.3 Earthquake Basing on the Ascending and Descending Orbit ASAR Data
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(4): 98-102.
[4] HONG Shun-Ying, LIU Zhi-Rong, DAI Ya-Qiong, SHEN Xu-Hui, SHAN Xin-Jian, JING Feng. Coseismic Deformation Field Characteristics and Rupture Model for Gaize Earthquakes in Tibet[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(1): 44-48.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech