Please wait a minute...
 
Remote Sensing for Land & Resources    2019, Vol. 31 Issue (1) : 117-124     DOI: 10.6046/gtzyyg.2019.01.16
|
An analysis of the influence of filtering parameter on the performance of Goldstein InSAR interfergram filter
Nianqin WANG1, Dejing QIAO1(), Xiyou FU2,3
1.College of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, China;
2.Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China
3.University of Chinese Academy of Sciences, Beijing 100049, China
Download: PDF(8978 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

To tackle the subjectivity of select filter parameters in Goldstein InSAR interferogram filtering, the authors adopted the experience value as Goldstein filter algorithm, and then introduced the coherent coefficient, the phase standard deviation, the pseudo coherent coefficient, the pseudo signal-to-noise ratio and the structure similarity as the adaptive filtering parameter of Goldstein interferogram filtering. After that, the authors used the simulation and the real interferometric data and carried out the detailed appraisal and the contrast analysis of the filter result. The results show that six filter parameters could suppress the noise and improve the quality of interference effectively. Among them, using the pseudo signal-to-noise as the filter parameters not only could suppress the noise and have more significant advantages in the edge information and fine pitch. Using structural similarity and pseudo signal-to-noise ratio can also achieve better filtering results. The filter result of other three kinds of filter parameter is relatively unsatisfactory.

Keywords interferometric synthetic aperture Radar (InSAR)      interferogram filtering      noise      Goldstein filter      filtering parameters     
:  TP79  
Corresponding Authors: Dejing QIAO     E-mail: djqiao@stu.xust.edu.cn
Issue Date: 15 March 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Nianqin WANG
Dejing QIAO
Xiyou FU
Cite this article:   
Nianqin WANG,Dejing QIAO,Xiyou FU. An analysis of the influence of filtering parameter on the performance of Goldstein InSAR interfergram filter[J]. Remote Sensing for Land & Resources, 2019, 31(1): 117-124.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2019.01.16     OR     https://www.gtzyyg.com/EN/Y2019/V31/I1/117
Fig.1  Detection of RPN
Fig.2  Results of simulated images
Fig.3  Filtering results of simulated images with different filtering parameters
α计算方法 PSD RMS EPI RPN
加噪干涉图 488 385.111 1 1.274 0 49 551
经验值(0.5) 282 021.662 7 0.523 7 2.988 4 3 084
相干系数 284 151.572 2 0.514 0 3.012 4 2 481
相位标准偏差 259 265.712 1 0.402 7 2.483 7 828
伪相干系数 311 998.156 5 0.606 7 3.668 5 5 067
伪信噪比 263 498.309 1 0.429 2 2.573 7 1 215
结构相似性 260 415.334 7 0.402 6 2.508 2 782
Tab.1  Effect evaluation of simulated phase diagram
Fig.4  Images (C band) of study area
Fig.5  Filtering results of real images (C band) with different filtering parameters
Fig.6  Images (L band) of study area
Fig.7  Filtering results of real images (L band) with different filtering parameters
α计算方法 意大利Etna火山(ERS SAR) 日本Fuji火山(ALOS PALSAR)
PSD RPN PSD RPN
原始干涉图 2 067 935.756 5 192 594 3 244 598.703 7 328 022
经验值 1 346 684.205 6 40 609 1 943 126.170 5 94 297
相干系数 1 368 080.957 1 38 324 1 896 392.754 0 91 439
相位标准偏差 1 237 380.454 6 29 110 1 311 997.895 2 67 137
伪相干系数 1 422 402.133 0 47 506 2 252 217.672 3 132 477
伪信噪比 1 255 771.932 8 30 344 1 838 473.267 5 93 457
结构相似性 1 251 396.008 3 29 882 1 848 474.377 5 96 131
Tab.2  Effect evaluation of real phase diagram
[1] 屈春燕, 张桂芳, 单新建 , 等. 2010年青海玉树地震同震-震后形变场特征及演化过程[J]. 地球物理学报, 2013,56(7):2280-2291.
doi: 10.6038/cjg20130715 url: http://www.cnki.com.cn/Article/CJFDTotal-DQWX201307014.htm
[1] Qu C Y, Zhang G F, Shan X J , et al. Coseismic and postseismic deformation fields of the 2010 Yushu,Qinghai Ms7.1 earthquake and their evolution processes[J]. Chinese Journal Geophysics, 2013,56(7):2280-2291.
[2] 乔学军, 李澍荪, 王琪 , 等. 利用InSAR技术获取三峡地区的数字高程模型[J]. 大地测量与地球动力学, 2003,32(2):122-127.
doi: 10.3969/j.issn.1671-5942.2003.02.024 url: http://www.cnki.com.cn/Article/CJFDTotal-DKXB200302028.htm
[2] Qiao X J, Li S S, Wang Q , et al. Acquisition of DEM of three gorges area by InSAR[J]. Journal of Geodesy and Geodynamics, 2003,32(2):122-127.
[3] Poreh D, Iodice A, Riccio D , et al. Railways’ stability observed in Campania (Italy) by InSAR data[J]. European Journal of Remote Sensing, 2016,49(1):417-431.
doi: 10.5721/EuJRS20164923 url: https://www.tandfonline.com/doi/full/10.5721/EuJRS20164923
[4] Zhou J M, Li Z, He X B , et al. Glacier thickness change mapping using InSAR methodology[J]. IEEE Geoscience and Remote Sensing Letters, 2014,11(1):44-48.
doi: 10.1109/LGRS.2013.2245854 url: http://ieeexplore.ieee.org/document/6476633/
[5] 赵文胜, 蒋弥, 何秀凤 . 干涉图像第二类统计Goldstein自适应滤波方法[J]. 测绘学报, 2016,45(10):1200-1209.
doi: 10.11947/j.AGCS.2016.20150457 url: http://www.cqvip.com/QK/90069X/201610/670580056.html
[5] Zhao W S, Jiang M, He X F . Improved adaptive Goldstein interferogram filter based on second kind statistics[J]. Acta Geodaetica et Cartographica Sinica, 2016,45(10):1200-1209.
[6] Baran I, Stewart M P, Kampes B M , et al. A modification to the Goldstein Radar interferogram filter[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003,41(9):2114-2118.
doi: 10.1109/TGRS.2003.817212 url: http://ieeexplore.ieee.org/document/1232224/
[7] Zhao C Y, Zhang Q, Ding X L , et al. An iterative Goldstein SAR interferogram filter[J]. International Journal of Remote Sensing, 2012,33(11):3443-3455.
doi: 10.1080/01431161.2010.532171 url: https://www.tandfonline.com/doi/full/10.1080/01431161.2010.532171
[8] 易辉伟, 朱建军, 李健 , 等. InSAR矿区形变监测的边缘保持-Goldstein组合滤波方法[J]. 中国有色金属学报, 2012,22(11):3185-3192.
url: http://d.wanfangdata.com.cn/Periodical/zgysjsxb201211030
[8] Yi H W, Zhu J J, Li J , et al. An edge preservation-Goldstein filter for InSAR inteferograms used in monitoring deformation of mining area[J]. The Chinese Journal of Nonferrous Metals, 2012,22(11):3185-3192.
[9] Wang Q, Huang H, Yu A , et al. An efficient and adaptive approach for noise filtering of SAR interferometric phase images[J]. IEEE Geoscience and Remote Sensing Letters, 2011,8(6):1140-1144.
doi: 10.1109/LGRS.2011.2158289 url: http://ieeexplore.ieee.org/document/5928386/
[10] Goldstein R M, Werner C L . Radar interferogram filtering for geophysical applications[J]. Geophysical Research Letters, 1998,25(21):4035-4038.
doi: 10.1029/1998GL900033 url: http://doi.wiley.com/10.1029/1998GL900033
[11] 于晓歆, 杨红磊, 彭军还 . 一种改进的Goldstein InSAR干涉图滤波算法[J]. 武汉大学学报(信息科学版), 2011,36(9):1051-1054.
url: http://d.wanfangdata.com.cn/Periodical/whchkjdxxb201109011
[11] Yu X X, Yang H L, Peng J H . A modified Goldstein algorithm for InSAR interferogram filtering[J]. Geomatics and Information Science of Wuhan University, 2011,36(9):1051-1054.
[12] Song R, Guo H, Liu G , et al. Improved Goldstein SAR interferogram filter based on empirical mode decomposition[J]. IEEE Geoscience and Remote Sensing Letters, 2013,11(2):399-403.
doi: 10.1109/LGRS.2013.2263554 url: http://ieeexplore.ieee.org/document/6530687/
[13] Wang Y, Huang H F, Dong Z , et al. A dual-domain interferometric phase filter[J]. Remote Sensing Letters, 2015,6(12):962-971.
doi: 10.1080/2150704X.2015.1093669 url: http://www.tandfonline.com/doi/full/10.1080/2150704X.2015.1093669
[14] Zou W, Li Z, Ding X , et al. A quantitative measure for the quality of InSAR interferogram based on phase differences[J]. Photogrammetric Engineering and Remote Sensing, 2004,70(10):1131-1138.
doi: 10.14358/PERS.70.10.1131 url: http://openurl.ingenta.com/content/xref?genre=article&issn=0099-1112&volume=70&issue=10&spage=1131
[15] 赵诣, 蒋弥, 杨川 , 等. InSAR干涉图滤波方法对比[J]. 测绘科学, 2017,42(6):149-154.
doi: 10.16251/j.cnki.1009-2307.2017.06.026 url: http://www.cqvip.com/QK/90556A/201706/672431080.html
[15] Zhao Y, Jiang M, Yang C , et al. Comparison between filtering methods for InSAR interferogram[J]. Science of Surveying and Mapping, 2017,42(6):149-154.
[16] 韩春明, 郭华东, 王长林 , 等. 保持边缘的SAR图像滤波方法[J]. 高技术通讯, 2003,13(7):11-15.
doi: 10.3321/j.issn:1002-0470.2003.07.003 url: http://www.cnki.com.cn/Article/CJFD2003-GJSX200307002.htm
[16] Han C M, Guo H D, Wang C L , et al. Edge-preserving filter for SAR images[J]. High Technology Letters, 2003,13(7):11-15.
[17] 廖明生, 林珲, 张祖勋 , 等. INSAR干涉条纹图的复数空间自适应滤波[J]. 遥感学报, 2003,7(2):98-105.
doi: 10.3321/j.issn:1007-4619.2003.02.004 url: http://www.cqvip.com/qk/92457A/200302/7678197.html
[17] Liao M S, Lin H, Zhang Z X , et al. Adaptive algorithm for filtering interferometric phase noise[J]. Journal of Remote Sensing, 2003,7(2):98-105.
[18] Hanssen R F . Radar interferometry:Data interpretation and error analysis[J]. Journal of the Graduated School of the Chinese Acedemy of Science, 2001,2(1):577-580.
[1] CHAO Zhenhua, CHE Mingliang, HOU Shengfang. Brief review of vegetation phenological information extraction software based on time series remote sensing data[J]. Remote Sensing for Natural Resources, 2021, 33(4): 19-25.
[2] Shangwang LIU, Liuyang GAO, Bo WANG. Research on image denoising algorithm of joint bilateral filter and wavelet threshold shrinkage[J]. Remote Sensing for Land & Resources, 2018, 30(2): 114-124.
[3] CUI Jian, SHI Penghui, BAI Weiming, LIU Xiaojing. Destriping model of GF-2 image based on moment matching[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(s1): 34-38.
[4] CHEN Jie, DU Lei, LI Jing, HAN Yachao, GAO Zihong. Hyperspectral data subspace dimension algorithm based on noise whitening[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 60-66.
[5] LIU Bin, GE Daqing, LI Man, ZHANG Ling, WANG Yan, GUO Xiaofang, ZHANG Xiaobo. Ground-based interferometric synthetic aperture radar and its applications[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 1-6.
[6] WEI Dandan, GAN Fuping, ZHANG Zhenhua, XIAO Chenchao, TANG Shaofan, ZHAO Huijie. A study of SNR index setting of infrared imager based on spectrum simulation[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(4): 18-23.
[7] GONG Shaoqi, ZHANG Xiru, WANG Shaofeng, SUN Deyong, LU Yicen, GUO Wenzhe. Removal of stripe noise in HY-1B/COCTS image based on waters[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(4): 41-46.
[8] LIU Xiaodan, YANG Shen. Forest vegetation texture measurement of remote sensing images based on the blue noise theory[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(2): 63-68.
[9] LAN Qiong-qiong, ZHANG Li-fu, WU Tai-xia. A Method to Destripe HJ-1A HSI Data Based on Nomalized Grey Level[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(2): 45-49.
[10] SONG Rui, LIU Guang, PERSKI Zbigniew, GUO Hua-dong. Research on an Improved Integrated Filtering Algorithm of SAR Interferogram[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(1): 28-35.
[11] ZHANG Rong-Hui, LIU Shun-Xi, ZHOU Lian-Fang, WU Hai-Ping, HE Yu-Hua. AN EMPIRICAL RESEARCH ON ANALYSIS AND PRE-PROCESSING OF
ALOS SATELLITE IMAGES
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2008, 20(3): 84-89.
[12] HAO Yan-Ling, TANG Yan-Hong, LU Zhi-Zhong. THE ALGORITHM FOR NOISE DETECTION AND FILTERING OF THE X-BAND NAUTICAL RADAR IMAGE[J]. REMOTE SENSING FOR LAND & RESOURCES, 2008, 20(2): 14-17.
[13] GU Hai-Yan, LI Hai-Tao, YANG Jing-Hui. THE REMOTE SENSING IMAGE FUSION METHOD
BASED ON MINIMUM NOISE FRACTION
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2007, 19(2): 53-55.
[14] XU Qian-Xiang, SHENG Hui, LIAO Ming-Sheng. URBAN EXPANSION RESEARCH BASED ON MNF AND MAD TRANSFORMATION[J]. REMOTE SENSING FOR LAND & RESOURCES, 2006, 18(4): 43-45.
[15] DU Pei-Jun, SUN Dun-Xin, LIN Hui. THE IMPACT OF WINDOW SIZE UPON SAR IMAGE FILTERING[J]. REMOTE SENSING FOR LAND & RESOURCES, 2006, 18(2): 12-15.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech