Please wait a minute...
 
Remote Sensing for Land & Resources    2020, Vol. 32 Issue (4) : 251-257     DOI: 10.6046/gtzyyg.2020.04.31
|
The application of UAV oblique photography in debris flow disaster identification and analysis:Taking the debris flow in Caojiafang, Shijiaying, Fangshan District, Beijing as an Example
YAN Chi(), JIAO Runcheng, CAO Ying, NAN Yun, WANG Shengyu, GUO Xuefei
Beijing Institute of Geology, Beijing 100120, China
Download: PDF(7086 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The traditional remote sensing survey method of debris flow is mainly orthophoto aerial photography, which has limitations in the accuracy and dimension of data acquisition. UAV tilt photography technology can simultaneously acquire images from different angles, such as vertical and tilt, obtain more complete and accurate information of ground objects, establish more intuitive three-dimensional model, and provide new technical means for geological disaster investigation. Taking the Caojiafang debris flow gully in Shijiaying as an example, the authors carried out the feature recognition analysis of debris flow disaster based on UAV tilt photogrammetry. It is believed that the high-precision three-dimensional model and texture details of debris flow gully can be obtained by incline photography, which can truly reflect the high-resolution information of the top and side of the real surface, and accurately obtain the distribution of debris flow material source and the estimation of material source volume; the data can be used to calculate the maximum amount of debris flow once washed out. This method can provide a more powerful means for the investigation of debris flow geological disasters and the assessment of current situation. The remote sensing technology can be fully used in the investigation and evaluation of debris flow disaster.

Keywords oblique photography      debris flow      three-dimensional model      remote sensing identification and analysis     
:  TP79  
Issue Date: 23 December 2020
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Chi YAN
Runcheng JIAO
Ying CAO
Yun NAN
Shengyu WANG
Xuefei GUO
Cite this article:   
Chi YAN,Runcheng JIAO,Ying CAO, et al. The application of UAV oblique photography in debris flow disaster identification and analysis:Taking the debris flow in Caojiafang, Shijiaying, Fangshan District, Beijing as an Example[J]. Remote Sensing for Land & Resources, 2020, 32(4): 251-257.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2020.04.31     OR     https://www.gtzyyg.com/EN/Y2020/V32/I4/251
Fig.1  Aerial image sketch map of Caojiafang debris flow ditch
Fig.2  Flow chart for rapid 3D modeling of oblique photographic data
Fig.3  Large scale Mesh model of Caojiafang debris flow gully
序号 物源类型 解译图斑数量/个 物源量估算/ m3
1 崩塌体 3 5 540
2 人类工程堆积物 10 49 970
3 风化危岩体 7 2 220
4 旱地覆土 4 109 060
5 未治理煤矸石堆 12 32 690
6 工程切坡 29 3 030
7 水体 6 9 650
8 危岩体 2 1 180
9 治理后煤矸石堆 8 2 486 180
10 自然松散堆积物 10 43 580
合计 274.31×104
Tab.1  Statistic of main provenance of Caojiafang debris flow gully
Fig.4  Image characteristics of collapse and dangerous rock mass
Fig.5  Image characteristics of coal gangue heap
Fig.6  Image characteristics of human engineering deposits
Fig.7  Image characteristics of engineering slope cutting
Fig.8  Image characteristics of natural loose deposits
Fig.9  Schematic diagram of the upstream channel blocking of Caojiafang debris flow gully
序号 威胁对象类型 解译图斑数量 长度/数量统计 单位
1 X019 1 313.33 m
2 矿区道路 3 2 121.55 m
3 乡村道路 9 11 470.16 m
4 畜牧场 1 1
5 政府用地 1 1
6 居民地 8 90
7 景区建筑物 8 26
8 矿山建筑物 8 8
Tab.2  Statistic of threatened objects in Caojiafang debris flow gully
Fig.10  Three dimensional schematic diagram of threat objects of Caojiafang debris flow gully
[1] 郑史芳, 黎治坤. 结合倾斜摄影技术的地质灾害监测[J]. 测绘通报, 2018(8):88-92.
[1] Zheng S F, Li Z K. Geological hazard monitoring combined with tilt photography[J]. Surveying and Mapping Bulletin, 2018(8):88-92.
[2] 李杨. 无人机倾斜摄影技术在地质灾害调查监测中的应用[J]. 冶金与材料, 2018,36(3):18-24.
[2] Li Y. Application of UAV tilt photography technology in geological hazard investigation and monitoring[J]. Metallurgy and Materials, 2018,36(3):18-24.
[3] 刘对萍, 潘艳宾. 无人机倾斜摄影在泥石流灾害调查中的应用[J]. 土地开发工程研究, 2016(6):34-39.
[3] Liu D P, Pan Y B. Application of UAV tilt photography in debris flow disaster investigation[J]. Land Development Engineering Research, 2016(6):34-39.
[4] 杨娟, 无人机倾斜摄影在地质灾害三维可视化中的应用[J]. 中国锰业, 2017,35(2):38-43.
[4] Yang J. The application of UAV tilt photography in three-dimensional visualization of geological hazards[J]. China Manganese Industry, 2017,35(2):38-43.
[5] 魏永明, 郭华东, 陈玉, 等. 甘肃省舟曲特大泥石流的遥感影像特征及古泥石流遥感识别的地质意义[J]. 第四纪研究, 2014,34(2):28-33.
[5] Wei Y M, Guo H D, Chen Y, et al. Remote sensing image characteristics of Zhouqu super-large debris flow in Gansu Province and geological significance of remote sensing identification of ancient debris flow[J]. Quaternary Study, 2014,34(2):28-33.
[6] 王润生, 熊盛青, 聂洪峰, 等. 遥感地质勘查技术与应用[J]. 地质学报, 2011,85(11):1699-1743.
url: http://www.geojournals.cn/dzxb/ch/reader/view_abstract.aspx?file_no=2011364&flag=1
[6] Wang R S, Xiong S Q, Nie H F, et al. Remote sensing technology and its application in geological exploration[J]. Acta Geologica Sinica, 2011,85(11):1699-1743.
[7] 童立强, 聂洪峰, 李建存, 等. 喜马拉雅山地区大型泥石流遥感调查与发育特征研究[J]. 国土资源遥感, 2013,25(4):104-112.doi: 10.6046/gtzyyg.2013.04.17.
doi: 10.6046/gtzyyg.2013.04.17 url: http://www.gtzyyg.com/CN/abstract/abstract1685.shtml
[7] Tong L Q, Nie H F, Li J C, et al. Survey of large-scale debris flow and study of its development characteristics using remote sensing technology in the Himalayas[J]. Remote Sensing for Land and Resources, 2013,25(4):104-112.doi: 10.6046/gtzyyg.2013.04.17.
[8] 郭兆成, 童立强, 郑雄伟, 等. 四川庐山地震次生地质灾害遥感调查及灾害特征初探[J]. 国土资源遥感, 2014,26(3):99-105.doi: 10.6046/gtzyyg.2014.03.16.
doi: 10.6046/gtzyyg.2014.03.16 url: http://www.gtzyyg.com/CN/abstract/abstract1775.shtml
[8] Guo Z C, Tong L Q, Zheng X W, et al. Remote sensing survey of secondary geological disasters triggered by Lushan earthquake in Sichuan Province and tentative discussion on disaster characteristics[J]. Remote Sensing for Land and Resources, 2014,26(3):99-105.doi: 10.6046/gtzyyg.2014.03.16.
[9] 张志军, 庄永成. 基于GF-1数据的地质灾害遥感调查——以青海省大通县为例[J]. 科学技术与工程, 2017,17(18):9-17.
[9] Zhang Z J, Zhuang Y C. The survey of geological hazards based on GF-1 data:Taking example for Datong County,Qinghai Province[J]. Science Technology and Engineering, 2017,17(18):9-17.
[10] 王钦军, 陈玉, 蔺启忠, 等. 矿山地质灾害遥感监测方法及成因分析[J]. 中国地质灾害与防治学报, 2011,22(1):75-79.
[10] Wang Q J, Chen Y, Lin Q Z, et al. Geological hazards monitoring method and its formation analysis in mining area[J]. The Chinese Journal of Geological Harzard and Control, 2011,22(1):75-79.
[11] 马思顺, 陈志雄, 王瑞雪, 等. 遥感技术在地质灾害调查中的应用[J]. 地质灾害与环境保护, 2017,28(4):80-86.
[11] Ma S S, Chen Z X, Wang R X, et al. Application of remote sensing technology in geological hazard investigation[J]. Journal of Geological Hazards and Environment Preservation, 2017,28(4):80-86.
[1] CHEN Fuqiang, LIU Yalin, GAO Xu, SONG Minghui, ZHANG Zhanzhong. Application of remote sensing technology to the engineering geological survey for the construction of the China-Nepal railway[J]. Remote Sensing for Natural Resources, 2021, 33(4): 219-226.
[2] WANG Ya, ZENG Zhi. An automatic repairing technology of 3D model for blind area in oblique photography based on close range image[J]. Remote Sensing for Land & Resources, 2021, 33(1): 72-77.
[3] LIAN Huiqing, MENG Lu, HAN Ruigang, YANG Yi, YU Biao. Geological information extraction based on remote sensing of unmanned aerial vehicle: Exemplified by Liujiang Basin[J]. Remote Sensing for Land & Resources, 2020, 32(3): 136-142.
[4] ZHANG Kun, LI Xiaomin, MA Shibin, LIU Shiying, LI Shenghui. Application of GF-1 image to geological disaster survey in Cosibsumgy village on Sino-India border area[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(2): 139-148.
[5] GUO Zhaocheng, TONG Liqiang, ZHOU Chengcan, ZHAO Zhenyuan. Verification of glacial lake outburst debris flow events in Jincuo Lake of Tibet based on remote sensing image analysis[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(1): 152-158.
[6] MA Jing, LIU Xianglei. Application of 3D visualization to the reconstruction of urban old districts[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(3): 170-174.
[7] TONG Liqiang, NIE Hongfeng, LI Jiancun, GUO Zhaocheng. Survey of large-scale debris flow and study of its development characteristics using remote sensing technology in the Himalayas[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(4): 104-112.
[8] XIE Fei, YANG Shu-wen, LI Yi-kun, LIU Tao. A Method for Automatic Extraction of Debris Flow Based on SPOT5 Image[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(3): 78-83.
[9] DENG Rui, HUANG Jing-Feng. The Monitoring of Landslide and Debris Flow Caused by Typhoon
Morakot Based on HJ-1 Images
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(1): 106-109.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech