Please wait a minute...
 
Remote Sensing for Natural Resources    2021, Vol. 33 Issue (3) : 138-147     DOI: 10.6046/zrzyyg.2020421
|
Transportation in the Siliguri Corridor, West Bengal, India: distribution characteristics, trafficability, and geological environment
SUN Ang1(), YANG Qinghua1, LIU Zhi2(), CHEN Hua1, JIANG Xiao1, JIANG Shoumin2, BIAN Yu1, TIAN Li2
1. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China
2. Sichuan Geological Survey Institute, Chengdu 610036, China
Download: PDF(8506 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Remote sensing interpretation of the Siliguri Corridor, West Bengal, India was carried out based on 33 scenes of multispectral remote sensing images from GF-1 and GF-2 satellites, which cover an area of 154 814 km2. As a result, the mileage, density, and distribution of highways at all levels in the Siliguri Corridor were obtained, and the overall characteristics of the transportation in the area were ascertained. Then this paper assessed the trafficability in the selected key areas using the weighted scoring method from the aspects such as landform, lithology, geologic disasters, and road conditions. Furthermore, the factors such as the variation and relative decrease rate of whole network’s efficiency (ΔE and e) of 19 pivotal nodes were calculated using the complex network theory. They can be used to characterize the importance of pivotal nodes relative to the overall trafficability of the road network. For the four most important pivotal nodes, the geological environment characteristics (i.e., important targets, slope, and engineering rock and soil masses in the peripheries of the nodes) were analyzed and potential disasters and risks were proposed.

Keywords Siliguri Corridor      transportation      distribution characteristics      trafficability      geological environment     
ZTFLH:  TP79  
Corresponding Authors: LIU Zhi     E-mail: sunangjlu@163.com;149275949@qq.com
Issue Date: 24 September 2021
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ang SUN
Qinghua YANG
Zhi LIU
Hua CHEN
Xiao JIANG
Shoumin JIANG
Yu BIAN
Li TIAN
Cite this article:   
Ang SUN,Qinghua YANG,Zhi LIU, et al. Transportation in the Siliguri Corridor, West Bengal, India: distribution characteristics, trafficability, and geological environment[J]. Remote Sensing for Natural Resources, 2021, 33(3): 138-147.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2020421     OR     https://www.gtzyyg.com/EN/Y2021/V33/I3/138
Fig.1  Data distribution
Fig.2  Image comparison before and after data processing
公路等级 特征描述
一级公路 重要城市之间的连接的主干道路及重点工矿区的公路,主要旅游点、进出机场、车站、港口的主干路及其所在地路段,商业网点众多,大型文化娱乐、展览等主要公共场所所在路段,平均人流量为100人次/min以上和公共交通线路较多的路段,主要领导机关、外事机构所在地,地区确定的重点道路、景观道路、快速路
二级公路 连接经济、政治中心或大工矿区等地的主干公路,城市网点较集中、占道路长度60%~70%的路段,公共文化娱乐活动场所所在路段,平均人流量为50~100人次/min的路段,有固定公共交通线路的路段
三级公路 连接县及县级以上城镇一般干线公路,城郊结合部的主要交通路段,居民区和单位相间的路段,商业网点较少的路段,人流量、车流量一般的路段
四级公路 县与乡、镇、村相连接的支线公路及连接乡镇的干线公路,居住区街巷道路,人流量、车流量较少的路段
等外公路 乡村、组之间连接的小路,乡镇与农田、农舍连接的小路,山区或牧区的砂砾石小路
Tab.1  Standard of highway classification
级别 GF-2 GF-1
遥感影像 可解译能力 遥感影像 可解译能力
一级公路 解译道路呈深灰色、浅灰色调,影像上为长条状,可见少量零散的居民地,影纹清晰,位于平原地区,可解译能力强 解译道路呈灰色、暗灰色调,影像上以规则的几何形态以及长条状的纹理为标志,可解译能力中等
二级公路 解译道路呈深灰色、浅灰色调,影像上为长条状,可见密集的居民地,影纹清晰,位于平原地区,可解译能力强 解译道路呈灰白色,影像上为一规则的长直线,位于平原区,两侧分布灰白色点簇状居民,可解译能力中等
三级公路 解译道路呈深灰色、浅灰色调,影像上为长条状,形态曲折,影纹较为清晰,位于山地地区,可解译能力强 解译道路呈灰色、浅灰色,影像上表现为规则的长直线,位于平原区,与周边地物差异不大,可解译能力一般
Tab.2  Comparison of the interpretability of roads of different widths based on GF-1 and GF-2 image
因子类别 评价因子 权重系数 分类 分值





断裂构造 0.15 发育 40
较发育 60
不发育 100
工程岩性 0.15 破碎 40
较破碎 60
完整 100
地貌 0.2 V形谷,谷底窄,谷坡陡 40
U形谷,谷底较宽,谷坡较缓 60
宽谷 100
地质灾害
发育程度
0.25 高易发区 40
中易发区 60
低易发区 100



坡度/(°) 0.15 ≤15 100
(15, 25) 60
≥25 40
路面宽度/m 0.1 ≤4 40
(4, 6] 60
(6,8] 80
>8 100
Tab.3  The coefficients and points of the evaluation factor for traffic capacity
Fig.3  Road network distribution in Siliguri Corridor area(1:250 000)
Fig.4  Road network distribution in key area(1:50 000)
Fig.5  Superimposed map of passable capability and geological environment in key area
路段名称 路段平均高程/m 路段高差/m 路段平均坡度/(°) 路段地质灾害描述 通行能力 路段长度/km 占比/%
1(苍古湖)-2(甘托克) 2 618 2 268 26 地质灾害发育,共计9处,包括7处滑坡与2处崩塌 54 7
2(甘托克)-3(辛塔姆) 807 1 068 24 地质灾害较发育,共计2处,包括1处滑坡、1处崩塌 较差 383 51
3(辛塔姆)-4(伦格博)-5(瑟佛克) 293 181 22 地质灾害发育,共计7处,包括泥石流1处、滑坡5处、崩塌1处。 中等 180 24
5(瑟佛克)-6(西里古里)-7(潘塞德瓦) 120 74 1 地质灾害不发育 139 18
Tab.4  Each section of traffic capacity in key area
节点编号 ΔE e 重要性排名
5 0.004 96 0.053 72 1
6 0.004 12 0.044 66 2
7 0.003 67 0.039 75 3
15 0.002 74 0.029 71 4
Tab.5  Index value after key node invalid in key area
Fig.6  Sketch map of shortest path after different key notes blocked
Fig.7  Geological environment of key note No.5
Fig.8  Geological environment of key note No.6
Fig.9  Geological environment of key note No.7
Fig.10  Geological environment of key note No.15
[1] Small K A, Verhoef E T. The economics of urban transportation[M]. London: Routledge, 2007.
[2] Vuchic V R. Urban public transportation systems[D]. Philadelphia:University of Pennsylvania, 2002.
[3] Button K. Transport economics[M]. London: Edward Elgar Publishing, 2010.
[4] 王润生, 童立强, 林键, 等. 遥感地质勘查技术与应用研究[J]. 地质学报, 2011, 85(11):1699-1743.
[4] Wang R S, Tong L Q, Lin J, et al. Remote sensing technology and its application in geological exploration[J]. Acta Geologica Sinica, 2011, 85(11):1699-1743.
[5] 付长亮, 杨清华, 姜琦刚, 等. 遥感技术在境外地质调查中的应用——以津巴布韦大岩墙为例[J]. 国土资源遥感, 2015, 27(4):85-92.doi: 10.6046/gtzyyg.2015.04.14.
doi: 10.6046/gtzyyg.2015.04.14
[5] Fu C L, Yang Q H, Jiang Q G, et al. Application of remote sensing technique to geological survey abroad:A case study of Great Dyke,Zimbabwe[J]. Remote Sensing for Land and Resources, 2015, 27(4):85-92.doi: 10.6046/gtzyyg.2015.04.14.
doi: 10.6046/gtzyyg.2015.04.14
[6] 于德浩, 龙凡, 杨清雷, 等. 现代军事遥感地质学发展及其展望[J]. 中国地质调查, 2017, 4(3):74-82.
[6] Yu D H, Long F, Yang Q L, et al. Development and prospects of modern military remote sensing geology[J]. Geological Survey of China, 2017, 4(3):74-82.
[7] 张栋, 吕新彪, 葛良胜, 等. 军事地质环境的研究内涵与关键技术[J]. 地质论评, 2019, 65(1):181-198.
[7] Zhang D, Lyu X B, Ge L S, et al. Research connotation and key technology of the military geological environment in the land battlefield[J]. Geological Review, 2019, 65(1):181-198.
[8] 徐泽鸿, 杨雪清, 李超, 等. 基于德国国家监测数据的境外遥感抽样调查方法研究[J]. 林业资源管理, 2014(1):41-51.
[8] Xu Z H, Yang X Q, Li C, et al. Research on overseas RS sampling inventory approach based on German NFI data[J]. Forest Resources Management, 2014(1):41-51.
[9] 杨清华, 陈华, 孟月玥, 等. 全国边海防地区基础地质遥感调查[R]. 北京:中国自然资源航空物探遥感中心, 2018.
[9] Yang Q H, Chen H, Meng Y Y, et al. Geological remote sensing of national border and costal defense areas[R]. Beijing:China Aero Geophysical Survey & Remote Sensing Center for Natural Resources, 2018.
[10] 杨清华, 于德浩, 龙凡, 等. 全国边海防地区遥感地质调查技术要求[S]. 北京: 地质出版社, 2018.
[10] Yang Q H, Yu D H, Long F, et al. Skills requirement of geological remote sensing of national border and costal defense areas[S]. Beijing: Geological Publishing House, 2018.
[11] 郭瑞军. 基于间隙接受理论的环形交叉口通行能力研究[D]. 北京:北京交通大学, 2013.
[11] Guo R J. Study on capacity of roundabouts based on gap acceptance theory[D]. Beijing:Beijing Jiaotong University, 2013.
[12] 陈金邕. 考虑可变通行能力及停车位约束的早高峰通勤问题研究[D]. 合肥:中国科学技术大学, 2019.
[12] Chen J Y. Study on morning commute problem considering variable capacity and parking space constraint[D]. Hefei:University of Science and Technology of China, 2019.
[13] 吴鼎新. 间歇优先公交专用道的通行能力及其影响研究[D]. 南京:东南大学, 2019.
[13] Wu D X. Study on capacity of bus lane with intermittent priority and its impacts[D]. Nanjing:Southeast University, 2019.
[14] 劭长桥, 张兴宇, 罗凯, 等. 高速公路施工区通行能力研究综述[J]. 武汉理工大学学报(交通科学与工程版), 2021, 45(2):207-212.
[14] Shao C Q, Zhang X Y, Luo K, et al. A review of estimating capacity in expressway work zones[J]. Journal of Wuhan University of Technology, 2021, 45(2):207-212.
[15] Latora V, Marchiori M. Is the Boston subway a small-world network?[J]. Physica A:Statistical Mechanics and Its Applications, 2002, 314(1-4):109-113.
doi: 10.1016/S0378-4371(02)01089-0 url: https://linkinghub.elsevier.com/retrieve/pii/S0378437102010890
[16] Sen P, Dasgupta S, Chatterjee A, et al. Small-world properties of the Indian railway network[J]. Physical Review E, 2003, 67(3):036106.
doi: 10.1103/PhysRevE.67.036106 url: https://link.aps.org/doi/10.1103/PhysRevE.67.036106
[17] Angeloudis P, Fisk D. Large subway systems as complex networks[J]. Physica A:Statistical Mechanics and Its Applications, 2006, 367:553-558.
doi: 10.1016/j.physa.2005.11.007 url: https://linkinghub.elsevier.com/retrieve/pii/S0378437105011994
[18] 金雷. 基于复杂网络的地域公路交通网抗毁性分析[D]. 长沙:国防科技大学, 2008.
[18] Jin L. Survivability analysis of road traffic network in the area based on the complex network[D]. Changsha:National University of Defense Technology, 2008.
[19] 叶青. 基于复杂网络理论的轨道交通网络脆弱性分析[J]. 中国安全科学学报, 2012, 22(2):122-126.
[19] Ye Q. Vulnerability analysis of rail transit based on complex network theory[J]. China Safety Science Journal, 2012, 22(2):122-126.
[20] 潘桂堂, 丁俊, 姚东生. 1:150万青藏高原及邻区地质图[Z]. 成都: 成都地图出版社, 2004.
[20] Pan G T, Ding J, Yao D S. Geological map of the Qinghai-Tibet Plateau and adjacent areas (1:1,500,000)[Z]. Chengdu: Chengdu Map Publishing House, 2004.
[21] Geological Purnia Quadrangle Map (1:250,000)[Z]. Geological Survey of India, 1995.
[22] Geological Dumka Quadrangle Map (1:250,000)[Z]. Geological Survey of India, 1998.
[23] Geological map of Eastern Nepal (1:250,000)[Z]. ADM Carto Consult Pvt. Ltd, 2006.
[24] Geological map of Bangladesh (1:1,000,000)[Z]. Geological Survey of Bangladesh, 1990.
[25] Geo-India Nepal Bhutan Plot (1:1,000,000)[Z]. U.S.Department of the Interior and USGS, 1990.
[26] 孙广忠, 孙毅. 地质工程学原理[M]. 北京: 地质出版社, 2004.
[26] Sun G Z, Sun Y. Principles of engineering geology[M]. Beijing: Geological Publishing House, 2004.
[27] 赵法锁, 李相然. 工程地质学[M]. 北京: 地质出版社, 2009.
[27] Zhao F S, Li X R. Engineering geology[M]. Beijing: Geological Publishing House, 2009.
[1] GAO Junhua, ZOU Lianxue, LONG Huan, CHU Shuitao. Analysis on characteristics of mine geological environment and ecological restoration changes in Jilin Province based on dynamic remote sensing monitoring[J]. Remote Sensing for Natural Resources, 2022, 34(3): 240-248.
[2] YIN Yaqiu, JIANG Cunhao, JU Xing, CHEN Keyang, WANG Jie, XING Yu. Remote sensing evaluation of mine geological environment of Hainan Island in 2018 and ecological restoration countermeasures[J]. Remote Sensing for Natural Resources, 2022, 34(2): 194-202.
[3] GAO Junhua, LIU Shasha, YANG Jinzhong, ZHAO Mingpeng, LIU Xinyue, ZOU Lianxue. Gray correlation evaluation of geological environment in the open-pit coal mine concentration area based on remote sensing:A case study of the Zhungeer Coalfield[J]. Remote Sensing for Land & Resources, 2021, 33(1): 183-190.
[4] Jie WANG, Yaqiu YIN, Hang YU, Cunhao JIANG, Yu WAN. Remote sensing monitoring of mine geological environment in Zhejiang Province based on RS and GIS[J]. Remote Sensing for Land & Resources, 2020, 32(1): 232-236.
[5] Xiaoxia REN, Fei YANG, Shuyun YANG, Ming YIN, Mengliang YU. The implementation of geological environment sub-node of Geological Cloud 1.0[J]. Remote Sensing for Land & Resources, 2019, 31(4): 250-257.
[6] Lin WANG, Xun LI, Yunxuan BAO, Yi SHAO. Research progress of remote sensing application on transportation meteorological disasters[J]. Remote Sensing for Land & Resources, 2018, 30(4): 1-7.
[7] MA Shibin, LI Shenghui, AN Ping, YANG Wenfang, XIN Rongfang. Remote sensing monitoring and quality evaluation for the mine geological environment of the Juhugeng coal mining area in Qinghai Province[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(2): 139-145.
[8] LI Xueyuan, ZHAO Bo, CHEN Shilei, ZHAO Yingwang, BIAN Kai. Spatial-temporal evolution analysis of mining geological environment based on RS and GIS: A case study of the Dongsheng ore district[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(2): 167-173.
[9] ZHAO Fu-yue, ZHANG Rui-jiang, CHEN Hua, SUN Yan-gui. Study of Qinghai-Tibet Plateau Uplift Response to Eco-geological Environment Based on Remote Sensing[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(3): 116-121.
[10] ZHANG Kun, SUN Yan-gui, JU Sheng-cheng, MA Shi-bin. Quaternary Lacustrine Deposition and Geological Environment Variations of Doqen Co-Gala Co Basin in Tibet[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(1): 59-64.
[11] LIU Feng-mei, ZENG Min. A Study of 3D Remote Sensing Technology in Geological Environment Investigation of the REE Mine[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(4): 136-139.
[12] JIANG Duan-Wu, HUANG Shu-Chun, ZHANG Yuan-Ping, YU De-Qing. A Discussion on the Evolution of the Dongting Lake Based on Geo-environmental Remote Sensing Investigation and Monitoring Data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(s1): 124-129.
[13] HUANG Shu-Chun, LIU Zhi, JIANG Duan-Wu, ZHANG Yuan-Ping.
A Study of Soil Erosion and Its Origin in Yangtze River Basin Based on the Remote Sensing Geological Environment
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(s1): 134-139.
[14] LIU Tong-Qing, CHEN You-Ming, YANG Ze-Dong, WANG Bai-Yan. An Analysis of Soil Erosion Characteristics and Correlative Geological Factors in the Middle and Lower Reaches of the Yangtze River[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(s1): 140-143.
[15] ZHAO Fu-Yue.
A Study of the Regularity of Quaternary Geological History Evolution in Songliao Plain Based on Geological Remote Sensing Survey
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(s1): 152-158.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech