Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2012, Vol. 24 Issue (1) : 59-64     DOI: 10.6046/gtzyyg.2012.01.11
Technology Application |
Quaternary Lacustrine Deposition and Geological Environment Variations of Doqen Co-Gala Co Basin in Tibet
ZHANG Kun1,2, SUN Yan-gui1,2, JU Sheng-cheng1,2, MA Shi-bin1,2
1. Center of Remote Sensing, Institute of Geological Survey of Qinghai Province, Xining 810012, China;
2. Qinghai-Tibet Plateau During the North Qilian Geology and Mineral Resources Laboratory of Qinghai Province, Xining 810012, China
Download: PDF(2953 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  To verify the lacustrine deposition and geological environment in Gala Co of Tibet in Quaternary Period, the authors carried out studies in this aspect by using remote sensing technologies such as DEM, ETM and ASTER interpretation images, The results show that severe deformation of lake deposition in southern Tibet during Middle Pleistocene epoch was caused by differential uplift of Gonghe movement, and angular unconformity proved the existence of this movement. It is held that the drastic drying of Gala Co was caused by its running dry after the adjacent Mabu Co had become a new dividing range in the basin as a consequence of global warming. The dryness of Gala Co has caused desertification in the region and worsened the regional natural environment.
Keywords GIS      Map Objects (MO)      Visual Basic (VB)      Land-use partition system      Hierarchical clustering model      Xinzhou city     
:  TP 79: P 531  
Issue Date: 07 March 2012
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN Li
GUO Qing-xia
JING Yao-dong
CHE Ai-ping
Cite this article:   
CHEN Li,GUO Qing-xia,JING Yao-dong, et al. Quaternary Lacustrine Deposition and Geological Environment Variations of Doqen Co-Gala Co Basin in Tibet[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(1): 59-64.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2012.01.11     OR     https://www.gtzyyg.com/EN/Y2012/V24/I1/59
[1] 李吉均,文世宣,张青松,等.青藏高原隆起的时代、幅度和形式的探讨论[J].中国科学(A辑),1979(6):608-616.
[2] 李吉均,方小敏,马海洲,等.晚新生代黄河上游地貌演化与青藏高原隆起[J].中国科学(D辑),1996,26(4):316-322.
[3] 李吉均.青藏高原的地貌演化与亚洲季风[J].海洋地质与第四纪地质,1999,19(1):1-10.
[4] 施雅风,李吉均,李炳元,等.晚新生代青藏高原的隆升与东亚环境变化[J].地理学报,1999,54(1):10-20.
[5] 李吉均,方小敏,潘保田,等.新生代晚期青藏高原强烈隆起及其对周边环境的影响[J].第四纪研究,2001,21(5):381-391.
[6] 崔之久,伍永秋,刘耕年,等.关于"昆仑-黄河运动"[J].中国科学(D辑),1998,28(1):53-59.
[7] 郑度,林振耀,张雪芹.青藏高原与全球环境变化研究进展[J].地学前缘,2002,9(1):95-102.
[8] 施雅风,李吉均,李炳元.青藏高原晚新生代隆升与环境变化[M].广州:广东科技出版社,1998:394-409.
[9] 侯增谦,李振清,曲晓明,等.0.5 Ma以来的青藏高原隆升过程—来自冈底斯带热水活动的证据[J].中国科学(D辑),2001,31(增刊):27-33.
[10] 潘保田.贵德盆地地貌演化与黄河上游发育研究[J].干旱区地理,1994,17(3):43-50.
[11] 徐叔鹰,徐德馥,石生仁.共和盆地地貌发育与环境演化探讨[J].兰州大学学报:自然科学版,1984,20(1):146-157.
[12] 孙延贵,方洪宾,张琨,等.共和盆地层状地貌系统与青藏高原隆升及黄河发育[J].中国地质,2007,34(6):1137-1143.
[13] 张智勇,于庆文,张克信,等.黄河上游第四纪河流地貌演化——兼论青藏高原1:25万新生代地质填图地质演化调查[J].地球科学—中国地质大学学报,2003,28(6):621-636.
[14] 张焜,孙延贵,巨生成,等.青海湖由外流湖转变为内陆湖的新构造过程[J].国土资源遥感,2010(增刊):77-81.
[15] 程捷,张绪教,田明中,等.黄河源区第四纪地质与生态环境[M].北京:地质出版社,2006:159-163.
[16] 向树元,王国灿,邓中林.东昆仑东段新生代高原隆升重大事件的沉积响应[J].地球科学—中国地质大学学报,2003,28(6):615-620.
[17] 黄映聪,杨德明,和钟铧,等.西藏门巴地区层状地貌特征及其形成机制[J].世界地质,2006,25(2):154-159.
[18] 陈诗越,王苏民,沈吉.青藏高原中部错鄂湖晚新生代以来的沉积环境演变及其构造隆升意义[J].湖泊科学,2003,15(1):21-27.
[19] 苏建平,仵彦卿,李麒麟,等.第四纪以来酒泉盆地环境演变与祁连山隆升[J].地球学报,2005,26(5):443-448.
[20] 刘东生,施雅风,王汝建,等.以气候变化为标志的中国第四纪地层对比表[J].第四纪研究,2000,20(2):108-127.
[21] 邵兆刚,孟宪刚,朱大岗,等.青藏高原层状地貌特征及其成因初探[J].地学前缘,2009,16(6):186-194.
[22] 龚宇,张文甫.西藏尼木南北向活动构造带的初步研究[J].四川地震,1993(1):13-19.
[23] 吴珍汉,胡道功,刘崎胜,等.西藏当雄地区构造地貌及形成演化过程[J].地球学报,2002,23(5):423-428.
[24] 朱大岗,孟宪刚,赵希涛,等.纳木错湖相沉积与藏北高原古大湖[J].地球学报,2001,22(2):149-155.
[25] 贺日政,高锐.西藏高原南北向裂谷研究意义[J].地球物理学进展,2003,18(1):35-43.
[26] 赵希涛,朱大岗,吴中海,等.西藏纳木错晚更新世以来的湖泊发育[J].地球学报,2002,23(4):329-334.
[27] 吴中海,赵希涛,吴珍汉,等.西藏纳木错地区约120kaBP以来的古植被、古气候与湖面变化[J].地质学报,2004,78(2):242-252.
[28] 赵希涛,朱大岗,严富华,等.西藏纳木错末次间冰期以来的气候变迁与湖面变化[J].第四纪研究,2003,23(1):41-52.
[29] 刘静,申旭辉,孟恺,等.西藏谷露盆地西缘断裂新活动特征研究[J].西北地震学报,2009,31(3):272-276.
[30] 刘细元,徐祖丰,黄俊平,等.邦多—措麦地区新构造运动特征及其演化简析[J].资源调查与环境,2005,26(3):157-167.
[31] 赵希涛,朱大岗,吴中海,等.西藏纳木错晚更新世以来的湖泊发育[J].地球学报,2002,23(4):329-334.
[32] 吴珍汉,吴中海,胡道功,等.青藏高原古大湖与夷平面的关系及高原面形成演化过程[J].现代地质,2009,23(6):993-1002.
[33] 刘文灿,周志广,高德臻,等.藏南亚东县帕里地区晚更新世—全新世湖相地层特征及古湖泊演化[J].地质通报,2006,25(6):708-714.
[34] 杨逸畴,李炳元,尹泽生,等.西藏高原地貌的形成和演化[J].地理学报,1982,37(1):76-87.
[35] 彭建兵,马润勇,卢全中,等.青藏高原隆升的地质灾害效应[J].地球科学进展,2004,19(3):457-466.
[36] 刘世好,但新球,吴后建,等.西藏自治区多庆错国家湿地公园湿地资源及其保护研究[J].湿地科学与管理,2009,5(3):30-33.
[37] 方洪宾,赵福岳,张振德,等.青藏高原现代生态地质环境遥感调查与演变研究[M].北京:地质出版社,2009:43-47.
[1] LI Dong, TANG Cheng, ZOU Tao, HOU Xiyong. Detection and assessment of the physical state of offshore artificial reefs[J]. Remote Sensing for Natural Resources, 2022, 34(1): 27-33.
[2] ZANG Liri, YANG Shuwen, SHEN Shunfa, XUE Qing, QIN Xiaowei. A registration algorithm of images with special textures coupling a watershed with mathematical morphology[J]. Remote Sensing for Natural Resources, 2022, 34(1): 76-84.
[3] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[4] WU Yijie, KONG Xuesong. Simulation and development mode suggestions of the spatial pattern of “ecology-agriculture-construction” land in Jiangsu Province[J]. Remote Sensing for Natural Resources, 2022, 34(1): 238-248.
[5] WANG Shuang, ZHANG Lei, ZHANG Junyong, WANG Yile. Characteristics of GIS applications in national fitness[J]. Remote Sensing for Natural Resources, 2021, 33(4): 265-271.
[6] ZHAO Longxian, DAI Jingjing, ZHAO Yuanyi, JIANG Qi, LIU Tingyue, FU Minghai. A study of mine site selection of the Duolong ore concentration area in Tibet based on RS and GIS technology[J]. Remote Sensing for Land & Resources, 2021, 33(2): 182-191.
[7] MIAO Miao, XIE Xiaoping. Spatial-temporal evolution analysis of Rizhao coastal zone during 1988—2018 based on GIS and RS[J]. Remote Sensing for Land & Resources, 2021, 33(2): 237-247.
[8] ZHANG Mengsheng, YANG Shuwen, JIA Xin, ZANG Liri. An automatic registration algorithm for remote sensing images based on grid index[J]. Remote Sensing for Land & Resources, 2021, 33(1): 123-128.
[9] YAO Kun, ZHANG Cunjie, HE Lei, LI Yuxia, LI Xiaoju. Dynamic evaluation and prediction of ecological environment vulnerability in the middle-upper reaches of the Yalong River[J]. Remote Sensing for Land & Resources, 2020, 32(4): 199-208.
[10] Yongquan WANG, Qingquan LI, Chisheng WANG, Jiasong ZHU, Xinyu WANG. Tethered UAVs-based applications in emergency surveying and mapping[J]. Remote Sensing for Land & Resources, 2020, 32(1): 1-6.
[11] Renbo SONG, Yuxin ZHU, Shangshan DING, Qiaoning HE, Xiyuan WANG, Yuexiang WANG. An automatic method for extracting skeleton lines from arbitrary polygons based on GIS spatial analysis[J]. Remote Sensing for Land & Resources, 2020, 32(1): 51-59.
[12] Yiqiang SHI, Qiuqin DENG, Jun WU, Jian WANG. Regression analysis of MODIS aerosol optical thickness and air quality index in Xiamen City[J]. Remote Sensing for Land & Resources, 2020, 32(1): 106-114.
[13] Xuanchi CHEN, Rong CHEN, Yufeng WU, Yueyue WANG. Research on the geological background of tea planting in Duyun City based on RS and GIS[J]. Remote Sensing for Land & Resources, 2020, 32(1): 224-231.
[14] Zhaorong MEI, Yunju LI, Xiang KANG, Shanbao WEI, Jianjun PAN. Temporal and spatial evolution in landscape pattern of mining site area based on moving window method[J]. Remote Sensing for Land & Resources, 2019, 31(4): 60-68.
[15] Quan AN, Zhonghua HE, Cuiwei ZHAO, Hong LIANG, Shulin JIAO, Chaohui YANG. GIS-based estimation of fractal dimension and geomorphological development of the water system in the dam construction area[J]. Remote Sensing for Land & Resources, 2019, 31(4): 104-111.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech