Please wait a minute...
 
Remote Sensing for Land & Resources    2021, Vol. 33 Issue (1) : 183-190     DOI: 10.6046/gtzyyg.2020006
|
Gray correlation evaluation of geological environment in the open-pit coal mine concentration area based on remote sensing:A case study of the Zhungeer Coalfield
GAO Junhua1,2(), LIU Shasha1,2, YANG Jinzhong3, ZHAO Mingpeng1,2, LIU Xinyue1,2, ZOU Lianxue1,2
1. Hunan Provincial General Station of Geological Environment Monitoring, Changsha 410007, China
2. Hunan Natural Resources Affairs Center, Changsha 410004, China
3. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China
Download: PDF(2935 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Satellite remote sensing technology has been used in China for more than ten years to obtain annual national mine geological environment remote sensing monitoring data. How to make full use of existing remote sensing monitoring results to carry out large-scale mining geological environmental assessment zoning is worthy of discussion and research. Therefore, the Zhungeer Coalfield was taken as the research area, and the artificial interpolation and hierarchical weighted improved gray correlation method was used to evaluate and analyze the geological environment of the 16 open-pit coal mines in the area, and the evaluation level divisions based on the mines were obtained. The evaluation conclusion is that the 3 mines of Huilong, Mengxiang and Liangjiaqi are severely affected by the environment, and the 5 mines of Tianciyuan, Weijiamao, Tingziyan, Liuhuliang and Heidaigou have relatively high environmental impacts. In the severe areas, 8 mines of Harwusu, Jinzhengtai, Zhaofu, Yongsheng, Cui’ergezui, Hongran, Huafu and Zhengren are general environmental impact areas, and other non-mine areas are the non-influenced areas. The evaluation results can reflect the geological environment status of the Zhungeer coalfield relatively objectively. Therefore, the gray correlation evaluation method of mine geological environment could be popularized and applied in a large area or even in whole China.

Keywords remote sensing      open pit coal mine      gray correlation method      mine geological environment evaluation     
ZTFLH:  TP79  
Issue Date: 18 March 2021
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Junhua GAO
Shasha LIU
Jinzhong YANG
Mingpeng ZHAO
Xinyue LIU
Lianxue ZOU
Cite this article:   
Junhua GAO,Shasha LIU,Jinzhong YANG, et al. Gray correlation evaluation of geological environment in the open-pit coal mine concentration area based on remote sensing:A case study of the Zhungeer Coalfield[J]. Remote Sensing for Land & Resources, 2021, 33(1): 183-190.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2020006     OR     https://www.gtzyyg.com/EN/Y2021/V33/I1/183
Fig.1  Schematic diagram of the mining area of Zhungeer Coalfield
县级行政区 矿山名称 开采规
模/万t
矿权面
积/ha
已开采
年/a
准格尔旗 哈尔乌素 2 000 5 772.43 12
黑岱沟 2 000 5 033.39 11
魏家峁 600 5 259.32 8
汇隆 300 762.70 6
厅子堰 300 406.35 3
蒙祥 180 454.84 5
崔二圪咀 120 1 267.40 2
金正泰 120 958.42 5
召富 120 741.00 2
华富 120 651.29 2
宏燃 120 600.59 2
清水河县 永胜 60 522.91 3
天赐源 60 248.25 5
刘胡梁 60 168.00 2
河曲县 梁家碛 300 1695.36 6
偏关县 正仁 90 813.02 4
Tab.1  List of open-pit mining rights in Zhungeer Coalfield
Fig.2  Evaluation index system of mine geological environment
准则层要素 指标 权重 参评因子 因子等级
较轻 一般 较重 很重
0.2 0.4 0.6 0.8
土地压占损毁 压占面积/hm2 0.2 中转场地 未利用地 <1 [1,10) [10,20] >20
林地草地 <1 [1,2) [2,4] >4
耕地 0 (0,1) [1,2] >2
损毁面积/hm2 0.4 固体废弃物 未利用地 <1.33 [1.33,2.67) [2.67,5.33] >5.33
林地草地 <0.67 [0.67,1.33) [1.33,2.67] >2.67
耕地 0 (0,0.33) [0.33,0.67] >0.67
采场 未利用地 <1.33 [1.33,2.67) [2.67,5.33] >5.33
林地草地 <0.67 [0.67,1.33) [1.33,2.67] >2.67
耕地 0 (0,0.33) [0.33,0.67] >0.67
矿山建筑 未利用地 <1.33 [1.33,2.67) [2.67,5.33] >5.33
林地草地 <0.67 [0.67,1.33) [1.33,2.67] >2.67
耕地 0 (0,0.33) [0.33,0.67] >0.67
矿山地质灾害 灾害体积/104m3 0.4 崩塌 <1 [1,10) [10,100] >100
滑坡 <10 [10,100) [100,1 000] >1 000
泥石流 <2 [2,20) [20,50] >50
影响范围/hm2 0.6 地面塌陷 <10 [10,100) [100,1 000] >1 000
地裂缝 <0.3 [0.3,1) [1,2] >2
矿山环境污染 影响范围/hm2 0.8 水体污染范围 <1 [1,10) [10,100] >100
土壤污染范围 <0.1 [0.1,1) [1,10] >10
Tab.2  Evaluation index levels of mine geological environment
矿山名称 土壤污
染源/hm2
土壤污
染范围/hm2
水体污
染源/hm2
水体污
染范围/hm2
露天采
场/hm2
滑坡灾害/
104m3
矿山生产
区/hm2
矿山生活
区/hm2
矿山办公
区/hm2
排土场/hm2 排土场
平整/hm2
哈尔乌素 26.88 126.85 4.72 38.47 650.85 NA 211.91 10.21 71.84 277.48 411.21
黑岱沟 20.50 194.47 NA NA 1 023.52 6 409.60 105.39 NA NA 875.54 186.05
魏家峁 56.75 226.04 NA NA 212.42 2 054.80 251.08 10.87 11.76 417.01 307.25
汇隆 3.37 39.47 NA NA 246.91 2 201.20 85.40 8.02 9.86 147.81 100.30
厅子堰 0.11 12.00 NA NA 70.44 700.80 9.49 15.13 10.75 68.44 NA
蒙祥 0.33 16.52 2.37 55.21 61.47 111.20 19.92 9.46 NA 89.92 NA
崔二圪咀 2.11 28.83 2.27 11.07 84.54 NA 73.13 NA NA 154.55 382.04
金正泰 NA NA NA NA 80.02 1 395.60 NA NA 9.13 215.75 NA
召富 NA NA 1.32 19.34 46.65 320.40 NA NA NA 64.88 NA
华富 NA NA NA NA 14.48 NA 0.99 NA 1.22 8.01 NA
宏燃 0.01 8.92 NA NA 72.49 295.20 1.55 4.32 NA 129.42 NA
矿山名称 土壤污
染源/hm2
土壤污
染范围/hm2
水体污
染源/hm2
水体污
染范围/hm2
露天采
场/hm2
滑坡灾害/
104m3
矿山生产
区/hm2
矿山生活
区/hm2
矿山办公
区/hm2
排土场/hm2 排土场平
整/hm2
永胜 0.18 9.26 NA NA 49.71 NA 19.53 1.10 1.35 8.26 8.75
天赐源 0.04 19.33 1.02 27.86 122.96 1 236.00 2.17 12.18 NA 111.59 30.09
刘胡梁 1.40 53.85 NA NA 92.48 150.00 25.92 3.74 3.90 90.88 NA
梁家碛 7.42 81.78 10.24 173.12 165.20 980.00 90.78 9.97 7.00 302.19 319.31
正仁 NA NA NA NA 4.64 NA 0.51 2.51 NA NA NA
Tab.3  Statistics of remote sensing monitoring results of the geological environment of Zhungeer Coalfield open-pit coal mine
矿山名称 平均值 标准差 矿山名称 平均值 标准差
哈尔乌素 0.774 7 0.118 9 召富 0.771 4 0.156 2
黑岱沟 0.787 4 0.173 6 华富 0.752 6 0.172 6
魏家峁 0.795 8 0.154 0 宏燃 0.756 9 0.149 1
汇隆 0.809 4 0.198 3 永胜 0.769 9 0.138 9
厅子堰 0.793 8 0.181 3 天赐源 0.797 7 0.189 0
蒙祥 0.807 7 0.126 2 刘胡梁 0.792 2 0.130 0
崔二圪咀 0.763 9 0.141 1 梁家碛 0.804 8 0.135 1
金正泰 0.771 7 0.175 8 正仁 0.750 9 0.169 5
Tab.4  Gray correlation evaluation results of the geological environment of Zhungeer Coalfield
Fig.3  Trend of ash-associated averages of mines in Zhungeer Coalfield
Fig.4  Zone map of geological environment assessment in Zhungeer Coalfield
[1] 国土资源部. DZ/T0223—2011矿山地质环境保护与恢复治理方案编制规范[S]. 北京:国土资源部地质环境司, 2011.
[1] Ministry of Land and Resources. DZ/T0223-2011 mine geological environmental protection and restoration and control plan preparation specifications[S]. Beijing:Department of Geology and Environment,Ministry of Land and Resources, 2011.
[2] 中国地质调查局. DD2014—05矿山地质环境调查评价规范[S]. 北京:中国地质调查局西安地质调查中心,中国地质环境监测院,山西省地质环境监测中心, 2014.
[2] China Geological Survey. DD2014—05 specifications for mine geological environment survey and evaluation[S]. Beijing:China Geological Survey Xi’an Geological Survey Center,China Geological Environment Monitoring Institute,Shanxi Provincial Geological Environment Monitoring Center, 2014.
[3] 江松林, 孙世群, 王辉. 安徽省矿山环境质量综合评价研究[J]. 合肥工业大学学报. 2008,31(1):112-115.
[3] Jiang S L, Sun S Q, Wang H. Comprehensive assessment of mine environmental quality of Anhui Province[J]. Journal of Hefei University of Technology, 2008,31(1):112-115.
[4] 陈俊奇. 基于RS和GIS的矿山地质环境调查与评价[D]. 北京:中国地质大学(北京), 2017.
[4] Chen J Q. Survey and evaluation of mine geological environment based on RS and GIS[D]. Beijing:China University of Geosciences (Beijing), 2017.
[5] 杨梅忠, 刘亮, 高让礼. 模糊综合评判在矿山环境影响评价中的应用[J]. 西安科技大学学报, 2006,26(4):439-442.
[5] Yang M Z, Liu L, Gao R L. Application of fuzzy synjournal evaluation to the environmental influence of the west mineral exploration[J]. Journal of Xi’an University of Science and Technology, 2006,26(4):439-442.
[6] 蒋复量, 周科平, 李向阳, 等. 基于集对分析的矿山地质环境影响评价研究[J], 矿冶工程, 2009,29(2):1-4.
[6] Jiang F L, Zhou K P, Li X Y, et al. Study on assessment of geological environment impact in mines based on set pair analysis[J]. Mining and Metallurgical Engineering, 2009,29(2):1-4.
[7] 郑丽媛, 曹金亮, 张建萍. 矿山地质环境评价方法综述[J]. 华北自然资源, 2019(10):74-75.
[7] Zheng L Y, Cao J L, Zhang J P. Summarization of assessment methods of mine geological environment[J]. North China Natural Resources, 2019(10):74-75.
[8] 辛建军, 张涛, 高慧卿, 等. 灰色系统理论在土地质量评价中的应用[J]. 农业系统科学与综合研究, 1987(12):39-46.
[8] Xin J J, Zhang T, Gao H Q, et al. The application of grey system theory in land quality evaluation[J]. System Sciemces and Comprehensive Studies in Agriculture, 1987(12):39-46.
[9] 孟宪林, 孙丽欣, 周定, 等. 灰色理论在环境质量评价中的应用与完善[J]. 哈尔滨工业大学学报, 2002,10(5):700-702.
[9] Meng X L, Sun L X, Zhou D, et al. Application and improvement of grey theory for assessment of environmental quality[J]. Journal of Harbin Institute of Technology, 2002,10(5):700-702.
[10] 肖晓柏, 许学工. 地表水环境质量灰关联评价方法探讨[J]. 环境科学与技术, 2003,5(3):34-36.
[10] Xiao X B, Xu X G. A Study on grey associative analysis for assessment of surface water quality[J]. Environmental Science and Technology, 2003,5(3):34-36.
[11] 吴开亚, 李如忠, 陈晓剑. 区域生态环境评价的灰色关联投影模型[J]. 长江流域资源与环境, 2003,9(5):473-478.
[11] Wu K Y, Li R Z, Chen X J. Grey relation projection model for the evaluation of regional eco-environmental quality[J]. Resources and Environment in the Yangtze River Basin, 2003,9(5):473-478.
[12] 刘德成, 靳小平, 周自梁. 灰色关联度分析法在北京通州区地裂缝灾害危险性评价中的应用[J]. 中国地质灾害与防治学报, 2010,9(3):73-76.
[12] Liu D C, Jin X P, Zhou Z L. Application of grey degree of association evaluation method in ground fissures in Tongzhou District of Beijing[J]. Chinese Journal of Geological Hazard and Control, 2010,9(3):73-76.
[13] 黄永泉, 危超, 何景媛. 基于灰色关联分析法的江西省矿山环境质量评价[J]. 资源调查与环境, 2012,4(4):268-273.
[13] Huang Y Q, Wei C, He J Y. Mine environmental quality evaluation by grey relational analysis method in Jiangxi Province[J]. Resources Survey and Environment, 2012,4(4):268-273.
[14] 刘方. 基于灰色关联度的模糊层次组合矿山地质环境评价模型研究[D]. 西安:长安大学, 2014.
[14] Liu F. Study on fuzzy hierarchical combination mine geological environment assessment model based on grey correlation[D]. Xi’an:Chang’an University, 2014.
[15] 焦明连. 基于灰色聚类分析的矿山环境质量评价[J]. 煤矿开采, 2016,4(2):78-82.
[15] Jiao M L. Evaluation of mine environment quality based on gray cluster analysis[J]. Coal Mining, 2016,4(2):78-82.
[16] 秦绪文, 杨金中, 康高峰, 等. 矿山遥感监测技术方法研究[M]. 北京: 测绘出版社, 2011.
[16] Qin X W, Yang J Z, Kang G F, et al. Research on mine remote sensing monitoring technology[M]. Beijing: Surveying and Mapping Press, 2011.
[17] 杨金中, 秦绪文, 张志, 等. 矿山遥感监测理论方法与实践[M]. 北京: 测绘出版社, 2011.
[17] Yang J Z, Qin X W, Zhang Z, et al. Theory and practice of remote sensing monitoring in mines[M]. Beijing: Surveying and Mapping Press, 2011.
[18] 杨金中, 聂洪峰, 荆青青. 初论全国矿山地质环境现状与存在问题[J]. 国土资源遥感, 2017,29(2):1-7.doi: 10.6046/gtzyyg.2017.02.01.
[18] Yang J Z, Nie H F, Jing Q Q. Preliminary analysis of mine geo-environment status and existing problems in China[J]. Remote Sensing for Land and Resources, 2017,29(2):1-7.doi: 10.6046/gtzyyg.2017.02.01.
[19] 杨金中, 聂洪峰, 王海庆, 等. 中国矿山地质环境遥感监测(2015年)[M]. 北京: 测绘出版社, 2017.
[19] Yang J Z, Nie H F, Wang H Q, et al. Remote sensing monitoring of mine geological environment in China (2015)[M]. Beijing: Surveying and Mapping Press, 2017.
[20] 杨金中, 王昊, 董双发, 等. 中国矿山地质环境遥感监测(2016年)[M]. 北京: 地质出版社, 2018.
[20] Yang J Z, Wang H, Dong S F, et al. Remote sensing monitoring of mine geological environment in China (2016)[M]. Beijing: Geological Publishing House, 2018.
[21] 杨金中, 王晓红, 王海庆, 等. 中国矿山地质环境遥感监测(2017年)[M]. 北京: 地质出版社, 2019.
[21] Yang J Z, Wang X H, Wang H Q, et al. Remote sensing monitoring of mine geological environment in China (2017)[M]. Beijing: Geological Publishing House, 2019.
[22] 王海庆, 武明德, 刘琼, 等. 山西某地矿业开发占用土地状况遥感监测[J]. 国土资源遥感, 2018,30(1):116-120.doi: 10.6046/gtzyyg.2018.01.16.
[22] Wang H Q, Wu M D, Liu Q, et al. Remote sensing monitoring of mining land in a certain area of Shanxi Province[J]. Remote Sensing for Land and Resources, 2018,30(1):116-120.doi: 10.6046/gtzyyg.2018.01.16.
[23] 杨显华, 黄洁, 田立, 等. 矿山遥感监测在采空区稳定性分析中的应用[J]. 国土资源遥感, 2018,30(3):143-150.doi: 10.6046/gtzyyg.2018.03.20.
[23] Yang X H, Huang J, Tian L, et al. Application of mine remote sensing monitoring to analysis of mine goaf stability[J]. Remote Sensing for Land and Resources, 2018,30(3):143-150.doi: 10.6046/gtzyyg.2018.03.20.
[24] 赵玉灵, 杨金中, 殷亚秋, 等. 海南岛东部滨海锆钛砂矿开发状况遥感监测与生态恢复治理对策研究[J]. 国土资源遥感, 2019,31(4):143-150.doi: 10.6046/gtzyyg.2019.04.19.
[24] Zhao Y L, Yang J Z, Yin Y Q, et al. Research on remote sensing monitoring of zirconium-titanium sand mine exploitation and strategies of ecological restoration on the eastern beach of Hainan Island[J]. Remote Sensing for Land and Resources, 2019,31(4):143-150.doi: 10.6046/gtzyyg.2019.04.19.
[25] 汪洁, 殷亚秋, 于航, 等. 基于RS和GIS的浙江省矿山地质环境遥感监测[J]. 国土资源遥感, 2020,32(1):232-236.doi: 10.6046/gtzyyg.2020.01.31.
[25] Wang J, Yin Y Q, Yu H, et al. Remote sensing monitoring of mine geological environment in Zhejiang Province based on RS and GIS[J]. Remote Sensing for Land and Resources, 2020,32(1):232-236.doi: 10.6046/gtzyyg.2020.01.31.
[26] 马世斌, 李生辉, 安萍, 等. 青海省聚乎更煤矿区矿山地质环境遥感监测及质量评价[J]. 国土资源遥感, 2015,27(2):139-145.doi: 10.6046/gtzyyg.2015.02.22.
[26] Ma S B, Li S H, An P, et al. Remote sensing monitoring and quality evaluation for the mine geological environment of the Juhugeng coal mining area in Qinghai Province[J]. Remote Sensing for Land and Resources, 2015,27(2):139-145.doi: 10.6046/gtzyyg.2015.02.22.
[27] 赵玉灵. 基于层次分析法的矿山环境评价方法研究——以海南岛为例[J]. 国土资源遥感, 2020,32(1):148-153.doi: 10.6046/gtzyyg.2020.01.20.
[27] Zhao Y L. Study and application of analytic hierarchy process of mine geological environment:A case study in Hainan Island[J]. Remote Sensing for Land and Resources, 2020,32(1):148-153.doi: 10.6046/gtzyyg.2020.01.20.
[28] 李文航, 龚建华. 遥感地表真实面积和垂直投影面积差异的定量化模拟[J]. 计算机应用研究, 2008,4(4):983-985.
[28] Li W H, Gong J H. Quantitative simulation for difference between true surface area and planimetric area[J]. Application Research of Computers, 2008,4(4):983-985.
[29] 吴子武. 内蒙准格尔煤田地质特征[J]. 煤田地质与勘探, 1981(10):16-18.
[29] Wu Z W. Geological characteristics of Zhungeer Coalfield,Inner Mongolia[J]. Coal Geology and Exploration, 1981(10):16-18.
[30] 高世华. 内蒙准格尔矿区的环境地质与灾害防治[C]// 第四届全国工程地质大会论文选集(三). 1992: 1168-1172.
[30] Gao S H. Environmental geology and disaster prevention in Zhungeer mining area, Inner Mongolia[C]// Selected Papers of the Fourth National Engineering Geology Congress(3). 1992: 1168-1172.
[31] 张力, 王晓东. 准格尔煤田的生态安全问题及对策研究[J]. 华北科技学院学报, 2010(1):40-43.
url: http://d.wanfangdata.com.cn/Periodical_hbkygdzkxxxb201001011.aspx
[31] Zhang L, Wang X D. Study on ecological security problems and countermeasures in Junger Coalfield[J]. Journal of North China Institute of Science and Technology, 2010(1):40-43.
[32] 罗振华. 准格尔煤田一期工程土地沙漠化环境影响预测方法[J]. 宁夏大学学报(自然科学版), 1993,9(3):42-47.
[32] Luo Z H. A method for predicting the environmental impact of land desertification in the phase I project of Zhungeer Coalfield[J]. Journal of Ningxia University(Natural Science Edition), 1993,9(3):42-47.
[33] 湖南省质量技术监督局. DB43/T 1042—2015矿山地质环境综合防治方案编制规范[S]. 长沙:湖南省地质环境监测总站, 2015.
[33] Hunan Provincial Bureau of Quality and Technical Supervision. DB43/T 1042—2015 specifications for the preparation of comprehensive prevention and control plans for mine geological environment[S]. Changsha:Hunan Provincial General Station for Geological Environment Monitoring, 2015.
[1] NIU Xianghua, HUANG Wei, HUANG Rui, JIANG Sili. A high-fidelity method for thin cloud removal from remote sensing images based on attentional feature fusion[J]. Remote Sensing for Natural Resources, 2023, 35(3): 116-123.
[2] DONG Ting, FU Weiqi, SHAO Pan, GAO Lipeng, WU Changdong. Detection of changes in SAR images based on an improved fully-connected conditional random field[J]. Remote Sensing for Natural Resources, 2023, 35(3): 134-144.
[3] WANG Jianqiang, ZOU Zhaohui, LIU Rongbo, LIU Zhisong. A method for extracting information on coastal aquacultural ponds from remote sensing images based on a U2-Net deep learning model[J]. Remote Sensing for Natural Resources, 2023, 35(3): 17-24.
[4] TANG Hui, ZOU Juan, YIN Xianghong, YU Shuchen, HE Qiuhua, ZHAO Dong, ZOU Cong, LUO Jianqiang. River and lake sand mining in the Dongting Lake area: Supervision based on high-resolution remote sensing images and typical case analysis[J]. Remote Sensing for Natural Resources, 2023, 35(3): 302-309.
[5] YU Hang, AN Na, WANG Jie, XING Yu, XU Wenjia, BU Fan, WANG Xiaohong, YANG Jinzhong. High-resolution remote sensing-based dynamic monitoring of coal mine collapse areas in southwestern Guizhou: A case study of coal mine collapse areas in Liupanshui City[J]. Remote Sensing for Natural Resources, 2023, 35(3): 310-318.
[6] WANG Jing, WANG Jia, XU Jiangqi, HUANG Shaodong, LIU Dongyun. Exploring ecological environment quality of typical coastal cities based on an improved remote sensing ecological index: A case study of Zhanjiang City[J]. Remote Sensing for Natural Resources, 2023, 35(3): 43-52.
[7] XU Xinyu, LI Xiaojun, ZHAO Heting, GAI Junfei. Pansharpening algorithm of remote sensing images based on NSCT and PCNN[J]. Remote Sensing for Natural Resources, 2023, 35(3): 64-70.
[8] LIU Li, DONG Xianmin, LIU Juan. A performance evaluation method for semantic segmentation models of remote sensing images considering surface features[J]. Remote Sensing for Natural Resources, 2023, 35(3): 80-87.
[9] FANG He, ZHANG Yuhui, HE Yue, LI Zhengquan, FAN Gaofeng, XU Dong, ZHANG Chunyang, HE Zhonghua. Spatio-temporal variations of vegetation ecological quality in Zhejiang Province and their driving factors[J]. Remote Sensing for Natural Resources, 2023, 35(2): 245-254.
[10] ZHANG Xian, LI Wei, CHEN Li, YANG Zhaoying, DOU Baocheng, LI Yu, CHEN Haomin. Research progress and prospect of remote sensing-based feature extraction of opencast mining areas[J]. Remote Sensing for Natural Resources, 2023, 35(2): 25-33.
[11] MA Shibin, PI Yingnan, WANG Jia, ZHANG Kun, LI Shenghui, PENG Xi. High-efficiency supervision method for green geological exploration based on remote sensing[J]. Remote Sensing for Natural Resources, 2023, 35(2): 255-263.
[12] WANG Ping. Application of thermal infrared remote sensing in monitoring the steel overcapacity cutting[J]. Remote Sensing for Natural Resources, 2023, 35(2): 271-276.
[13] LI Tianchi, WANG Daoru, ZHAO Liang, FAN Renfu. Classification and change analysis of the substrate of the Yongle Atoll in the Xisha Islands based on Landsat8 remote sensing data[J]. Remote Sensing for Natural Resources, 2023, 35(2): 70-79.
[14] DIAO Mingguang, LIU Yong, GUO Ningbo, LI Wenji, JIANG Jikang, WANG Yunxiao. Mask R-CNN-based intelligent identification of sparse woods from remote sensing images[J]. Remote Sensing for Natural Resources, 2023, 35(2): 97-104.
[15] ZHAO Hailan, MENG Jihua, JI Yunpeng. Application status and prospect of remote sensing technology in precise planting management of apple orchards[J]. Remote Sensing for Natural Resources, 2023, 35(2): 1-15.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech