Please wait a minute...
 
Remote Sensing for Natural Resources    2024, Vol. 36 Issue (4) : 135-141     DOI: 10.6046/zrzyyg.2023118
|
Precise mapping of open beach areas by combining laser point clouds and stereo optical satellite imagery
WANG Zongwei1,2(), LU Minyan1,2, FAN Yilin1,2
1. Jiangsu Province Surveying and Mapping Engineering Institute, Nanjing 210013, China
2. Key Laboratory of Land Satellite Remote Sensing Application, Ministry of Natural Resources, Nanjing 210013, China
Download: PDF(5828 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

This study aims to overcome the challenges of precise mapping of open beach areas using stereo satellite imagery. Based on the complementary characteristics of stereo optical satellite imagery and light detection and ranging (LiDAR) point cloud data in geometric positioning, this study developed a high-precision mapping method that employed high-precision LiDAR point cloud data for generalized control. First, the LiDAR depth map was matched with the optical satellite images to extract corresponding point pairs for generalized control. Then, the images and control points were used as inputs for adjustment to achieve an accurate geometric positioning of the images. Finally, guided by LiDAR point cloud data and in combination with multi-baseline and multi-primitive matching algorithms and the geomorphologic refined matching (GRM) algorithm, a high-precision digital surface model (DSM) for open beach areas was automatically extracted. The results of this study indicate that the combined use of laser point clouds and stereo satellite imagery, along with photogrammetric technology, allows for the quick and accurate preparation of high-precision topographic maps of open beach areas. This study provides valuable guidance for the precise mapping of open beach areas.

Keywords stereo optical satellite      LiDAR point cloud      geometric positioning      DSM automatic extraction     
ZTFLH:  TP79  
Issue Date: 23 December 2024
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zongwei WANG
Minyan LU
Yilin FAN
Cite this article:   
Zongwei WANG,Minyan LU,Yilin FAN. Precise mapping of open beach areas by combining laser point clouds and stereo optical satellite imagery[J]. Remote Sensing for Natural Resources, 2024, 36(4): 135-141.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2023118     OR     https://www.gtzyyg.com/EN/Y2024/V36/I4/135
Fig.1  Technical flowchart of this study
Fig.2  Location of the research area
Fig.3  Stereoscopic satellite image pairs
Fig.4  3D laser point cloud data
Fig.5  Automatic extraction of image control point distribution maps from LiDAR and GF-7 stereo satellite images
Fig.6  Comparison of pure image matching accuracy under uncontrolled and controlled conditions
Fig.7  Comparison of DSM effect generated by laser point cloud aided matching and direct matching after geometric positioning of satellite imagery
Fig.8  Comparison of accuracy between pure image matching and laser point cloud assisted matching under controlled conditions
[1] Zhu Q, Jiang W, Zhu Y, et al. Geometric accuracy improvement method for high-resolution optical satellite remote sensing imagery combining multi-temporal SAR imagery and GLAS data[J]. Remote Sensing, 2020, 12(3):568.
[2] 付琨, 孙显, 仇晓兰, 等. 遥感大数据条件下多星一体化处理与分析[J]. 遥感学报, 2021, 25(3):691-707.
[2] Fu K, Sun X, Qiu X L, et al. Multi-satellite integrated processing and analysis method under remote sensing big data[J]. National Remote Sensing Bulletin, 2021, 25(3):691-707.
[3] Tang S, Wu B, Zhu Q. Combined adjustment of multi-resolution satellite imagery for improved geo-positioning accuracy[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 114:125-136.
[4] 李红帅. 基于激光点云图像融合的三维重建方法与应用[D]. 桂林: 桂林电子科技大学, 2021.
[4] Li H S. Three-dimensional reconstruction method and application based on laser point cloud image fusion[D]. Guilin: Guilin University of Electronic Technology, 2021.
[5] Dai J, Li D F, Li Y Q, et al. Mobile robot localization and mapping algorithm based on the fusion of image and laser point cloud[J]. Sensors, 2022, 22(11):4114.
[6] Chan S H, Wu P T, Fu L C. Robust 2D indoor localization through laser SLAM and visual SLAM fusion[C]// 2018 IEEE International Conference on Systems,Man,and Cybernetics (SMC).Miyazaki,Japan.IEEE, 2018:1263-1268.
[7] Zhang L, Wang G, Sun W. Automatic extraction of building geometries based on centroid clustering and contour analysis on oblique images taken by unmanned aerial vehicles[J]. International Journal of Geographical Information Science, 2022, 36(3):453-475.
[8] Zhou G, Zhou X. Seamless fusion of LiDAR and aerial imagery for building extraction[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(11):7393-7407.
[9] Abayowa B O, Yilmaz A, Hardie R C. Automatic registration of optical aerial imagery to a LiDAR point cloud for generation of city models[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 106:68-81.
[10] Su Y J, Guo Q H, Ma Q, et al. SRTM DEM correction in vegetated mountain areas through the integration of spaceborne LiDAR,airborne LiDAR,and optical imagery[J]. Remote Sensing, 2015, 7(9):11202-11225.
[11] Li J Y, Hu Q W, Ai M Y. RIFT:Multi-modal image matching based on radiation-variation insensitive feature transform[J]. IEEE Transactions on Image Processing:A Publication of the IEEE Signal Processing Society, 2019:3296-3310.
[12] Ye Y, Shan J, Bruzzone L, et al. Robust registration of multimodal remote sensing images based on structural similarity[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(5):2941-2958.
[13] Ye Y X, Bruzzone L, Shan J, et al. Fast and robust matching for multimodal remote sensing image registration[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11):9059-9070.
[14] 樊仲藜, 张力, 王庆栋, 等. SAR影像和光学影像梯度方向加权的快速匹配方法[J]. 测绘学报, 2021, 50(10):1390-1403.
doi: 10.11947/j.AGCS.2021.20200587
[14] Fan Z L, Zhang L, Wang Q D, et al. A fast matching method of SAR and optical images using angular weighted orientated gradients[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(10):1390-1403.
doi: 10.11947/j.AGCS.2021.20200587
[15] 张力, 刘玉轩, 孙洋杰, 等. 数字航空摄影三维重建理论与技术发展综述[J]. 测绘学报, 2022, 51(7):1437-1457.
doi: 10.11947/j.AGCS.2022.20220130
[15] Zhang L, Liu Y X, Sun Y J, et al. A review of developments in the theory and technology of three-dimensional reconstruction in digi-tal aerial photogrammetry[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7):1437-1457.
[16] 张力, 艾海滨, 许彪, 等. 基于多视影像匹配模型的倾斜航空影像自动连接点提取及区域网平差方法[J]. 测绘学报, 2017, 46(5):554-564.
doi: 10.11947/j.AGCS.2017.20160571
[16] Zhang L, Ai H B, Xu B, et al. Automatic tie-point extraction based on multiple-image matching and bundle adjustment of large block of oblique aerial images[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(5):554-564.
doi: 10.11947/j.AGCS.2017.20160571
[1] Juntao ZHU, Lei WANG, Chuan ZHAO, Xudong ZHENG. Point cloud segmentation on the roof of complicated building based on the algorithm of region growing[J]. Remote Sensing for Land & Resources, 2019, 31(4): 20-25.
[2] Jiasi YI, Xiangyun HU. Extracting impervious surfaces from multi-source remote sensing data based on Grabcut[J]. Remote Sensing for Land & Resources, 2018, 30(3): 174-180.
[3] ZHENG Shasha, DONG Pinliang, WANG Cheng, XI Xiaohuan, LYU Yibin. Lacunarity analysis of LiDAR point clouds for tree crowns[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(4): 103-110.
[4] LI Feng, CUI Ximin, YUAN Debao, WANG Qiang, WU Yajun. Extraction of the building region from airborne LiDAR point clouds under complex urban conditions[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(3): 85-89.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech