Please wait a minute...
 
Remote Sensing for Land & Resources    2018, Vol. 30 Issue (3) : 174-180     DOI: 10.6046/gtzyyg.2018.03.24
|
Extracting impervious surfaces from multi-source remote sensing data based on Grabcut
Jiasi YI, Xiangyun HU
School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China
Download: PDF(2377 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Impervious surface is a major indicator of rapid urbanization, which leads to urban waterlogging. In this study, the authors took the advantages of multi-spectral satellite imagery and LiDAR data based on Grabcut to extract impervious surfaces. Taking the Guangzhou City as a study case, the authors reveal that the method can reach higher overall accuracy and robustness than the traditional single-source method.

Keywords impervious surfaces      multi-source remote sensing data      Grabcut      satellite imagery      LiDAR point cloud     
:  TP79  
Issue Date: 10 September 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jiasi YI
Xiangyun HU
Cite this article:   
Jiasi YI,Xiangyun HU. Extracting impervious surfaces from multi-source remote sensing data based on Grabcut[J]. Remote Sensing for Land & Resources, 2018, 30(3): 174-180.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2018.03.24     OR     https://www.gtzyyg.com/EN/Y2018/V30/I3/174
Fig.1  Flowchart of extracted method
Fig.2  Multi-source features
Fig.3  Classification results
Fig.4  Details of classification results
数据源 生产者精度/% 用户精度/% 总体精度/% Kappa系数
不透水面 透水面 不透水面 透水面
本文方法 93.47 86.20 99.93 99.97 90.25 0.820
聚类所得初值 88.41 87.42 89.84 85.70 87.97 0.783
不加入LiDAR数据 89.38 86.29 89.13 86.59 88.01 0.783
不加入Landsat8数据 90.93 81.18 85.88 87.67 86.61 0.760
Tab.1  Classification accuracy of different source data
方法 生产者精度/% 用户精度/% 总体精度/% Kappa系数
不透水面 透水面 不透水面 透水面
本文方法 93.47 86.20 99.93 99.97 90.25 0.820
最大似然监督分类 77.47 91.48 91.97 76.34 83.68 0.719
线性光谱混合分解 94.20 72.43 81.13 90.84 84.56 0.727
决策树分类 89.22 82.66 86.62 85.90 86.31 0.756
Tab.2  Classification accuracy of the proposed method and the traditional remote sensing methods
[1] 吴庆洲 . 论北京暴雨洪灾与城市防涝[J].中国名城, 2012(10):4-13.
doi: 10.3969/j.issn.1674-4144.2012.10.001 url: http://d.wanfangdata.com.cn/Periodical/zhgmc201210001
[1] Wu Q Z . Discussion on rains and floods in Beijing and urban waterlogging prevention[J].China Ancient City, 2012(10):4-13.
[2] 任金华, 吴绍华, 周生路 , 等. 城市不透水面遥感研究进展[J].国土资源遥感, 2012(4):8-15.doi: 10.6046/gtzyyg.2012.04.02.
[2] Ren J H, Wu S H, Zhou S L , et al. Advances in remote sensing research on urban impervious surface[J].Remote Sensing for Land and Resources, 2012(4):8-15.doi: 10.6046/gtzyyg.2012.04.02.
[3] 曹丽琴, 李平湘, 张良培 , 等. Fuzzy ARTMAP算法在城市不透水面估算中的应用研究[J]. 武汉大学学报(信息科学版), 2012,37(10):1236-1239.
url: http://d.wanfangdata.com.cn/Periodical/whchkjdxxb201210025
[3] Cao L Q, Li P X, Zhang L P , et al. Estimating impervious surfaces using the Fuzzy ARTMAP[J]. Geomatics and Information Science of Wuhan University, 2012,37(10):1236-1239.
[4] Sun G Y, Chen X L, Jia X P , et al. Combinational build-up index(CBI) for effective impervious surface mapping in urban areas[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015,9(5):2081-2092.
doi: 10.1109/JSTARS.2015.2478914 url: http://ieeexplore.ieee.org/document/7293620/
[5] Shahtahmassebi A R, Song J, Zheng Q , et al. Remote sensing of impervious surface growth:A framework for quantifying urban expansion and re-densification mechanisms[J]. International Journal of Applied Earth Observation and Geoinformation, 2016,46:94-112.
doi: 10.1016/j.jag.2015.11.007 url: http://linkinghub.elsevier.com/retrieve/pii/S0303243415300532
[6] Gao Z H, Zhang L, Liao M S, et al. Estimating urban impervious surface percentage with multi-source remote sensing data [C]//Proceedings of 2009 Joint Urban Remote Sensing Event.Shanghai,China:IEEE, 2009: 1-5.
[7] Qiao Y, Liu H P, Bai M , et al. Extracting impervious surfaces from multi-source satellite imagery based on unified conceptual model by decision tree algorithm[J]. Science China Technological Sciences, 2010,53(S1):68-74.
doi: 10.1007/s11431-010-3207-1 url: http://link.springer.com/10.1007/s11431-010-3207-1
[8] Cai C, Li P J, Jin H R . Extraction of urban impervious surface using two-season worldview-2 images:A comparison[J]. Photogrammetric Engineering and Remote Sensing, 2016,82(5):335-349.
doi: 10.1016/S0099-1112(16)82014-5 url: http://openurl.ingenta.com/content/xref?genre=article&issn=0099-1112&volume=82&issue=5&spage=335
[9] Gao Z H, Liu X W. Support vector machine and object-oriented classification for urban impervious surface extraction from satellite imagery [C]//Proceeding of the Third International Conference on Agro-Geoinformatics.Beijing,China:IEEE, 2014: 1-5.
[10] Zhang Y Z, Zhang H S, Lin H . Improving the impervious surface estimation with combined use of optical and SAR remote sensing images[J]. Remote Sensing of Environment, 2014,141:155-167.
doi: 10.1016/j.rse.2013.10.028 url: http://linkinghub.elsevier.com/retrieve/pii/S0034425713003969
[11] Kotarba A Z, Aleksandrowicz S . Impervious surface detection with nighttime photography from the international space station[J]. Remote Sensing of Environment, 2016,176:295-307.
doi: 10.1016/j.rse.2016.02.009 url: http://linkinghub.elsevier.com/retrieve/pii/S0034425716300372
[12] Hodgson M E, Jensen J R, Tullis J A , et al. Synergistic use of LiDAR and color aerial photography for mapping urban parcel imperviousness[J]. Photogrammetric Engineering and Remote Sensing, 2003,69(9):973-980.
doi: 10.14358/PERS.69.9.973 url: http://openurl.ingenta.com/content/xref?genre=article&issn=0099-1112&volume=69&issue=9&spage=973
[13] Im J, Lu Z Y, Rhee J , et al. Impervious surface quantification using a synjournal of artificial immune networks and decision/regression trees from multi-sensor data[J]. Remote Sensing of Environment, 2012,117:102-113.
doi: 10.1016/j.rse.2011.06.024 url: http://linkinghub.elsevier.com/retrieve/pii/S0034425711002847
[14] 徐涵秋 . 一种快速提取不透水面的新型遥感指数[J]. 武汉大学学报(信息科学版), 2008,33(11):1150-1153.
url: http://www.cnki.com.cn/Article/CJFDTotal-WHCH200811012.htm
[14] Xu H Q . A new remote sensing index for fastly extracting impervious surface information[J]. Geomatics and Information Science of Wuhan University, 2008,33(11):1150-1153.
[15] Rouse J W, Haas R H, Schell J A, et al. Monitoring vegetation systems in the great plains with erts [C]//Proceedings of Third Earth Resources Technology Satellite-1 Symposium.Greenbelt:NASA, 1974,351:309-317.
[16] Xu H Q . Modification of normalised difference water index(NDWI) to enhance open water features in remotely sensed imagery[J]. International Journal of Remote Sensing, 2006,27(14):3025-3033.
doi: 10.1080/01431160600589179 url: http://www.tandfonline.com/doi/abs/10.1080/01431160600589179
[17] 龚亮, 张永生, 李正国 , 等. 基于强度信息聚类的机载LiDAR点云道路提取[J].测绘通报, 2011(9):15-17,24.
[17] Gong L, Zhang Y S, Li Z G , et al. Automated road extraction from LiDAR data based on clustering of intensity[J].Bulletin of Surveying and Mapping, 2011(9):15-17,24.
[18] 彭检贵, 马洪超, 高广 , 等. 利用机载LiDAR点云数据提取城区道路[J].测绘通报, 2012(9):16-19.
[18] Peng J G, Ma H C, Gao G , et al. Road extraction from airborne LiDAR point clouds data in urban area[J].Bulletin of Surveying and Mapping, 2012(9):16-19.
[19] Boykov Y Y, Jolly M P. Interactive graph cuts for optimal boundary and region segmentation of objects in N-D images [C]//Proceedings of 2001 IEEE International Conference on Computer Vision.Vancouver:IEEE, 2001: 105-112.
[20] Rother C, Kolmogorov V, Blake A . “GrabCut”:Interactive foreground extraction using iterated graph cuts[J]. ACM Transactions on Graphics, 2004,23(3):309-314.
doi: 10.1145/1015706 url: http://portal.acm.org/citation.cfm?doid=1015706
[1] GUO Wen, ZHANG Qiao. Building extraction using high-resolution satellite imagery based on an attention enhanced full convolution neural network[J]. Remote Sensing for Land & Resources, 2021, 33(2): 100-107.
[2] Juntao ZHU, Lei WANG, Chuan ZHAO, Xudong ZHENG. Point cloud segmentation on the roof of complicated building based on the algorithm of region growing[J]. Remote Sensing for Land & Resources, 2019, 31(4): 20-25.
[3] Wei ZHANG, Jianwei QI, Ying CHEN, Xu HAN. A study of block adjustment of domestic multi-source high resolution satellite images[J]. Remote Sensing for Land & Resources, 2019, 31(1): 125-132.
[4] Yangming WANG, Jingfa ZHANG, Zhirong LIU, Xuhui SHEN. Active faults interpretation of Shannan area in Tibet based on multi-source remote sensing data[J]. Remote Sensing for Land & Resources, 2018, 30(3): 230-237.
[5] Xiaoping ZHANG, Ying LYU, Huaguo ZHANG, Chaokui LI. Remote sensing analysis of impervious surface changes in Zhoushan Islands during 1990—2011[J]. Remote Sensing for Land & Resources, 2018, 30(2): 178-185.
[6] Xiaogang HOU, Zhaojun ZHENG, Shuai LI, Xuehua CHEN, Yu CUI. Generation of daily cloudless snow cover product in the past 15 years in Xinjiang and accuracy validation[J]. Remote Sensing for Land & Resources, 2018, 30(2): 214-222.
[7] MEI Junjun, XU Suning, PENG Ling, XING Gulian, LI Wenjuan. Application of domestic high-resolution satellite imagery data to the investigation of surface collapse in the Tiechanggou coal mine of Xinjiang[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(s1): 132-136.
[8] DONG Lina, ZHANG Wei, WANG Xue, CHEN Ling, YANG Jinzhong, MO Zifen. Remote sensing geological interpretation and uranium prospecting perspective analysis of Shengyuan volcanic basin in Jiangxi Province[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(4): 102-108.
[9] LIU Xinxing, CHEN Jianping, ZENG Min, DAI Jingjing, PEI Yingru, REN Mengyi, WANG Na. Geological structural interpretation of Qiangduo area in Tibet based on multi-source remote sensing data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(3): 154-160.
[10] ZHENG Shasha, DONG Pinliang, WANG Cheng, XI Xiaohuan, LYU Yibin. Lacunarity analysis of LiDAR point clouds for tree crowns[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(4): 103-110.
[11] LIU Shanlei, SHI Shanqiu, ZHANG Lijing, ZHAO Yindi, WANG Guanghui. Selection of GCP in geometric correction of remote sensing images[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(3): 86-91.
[12] XU Xu, GAO Ang, ZHU Pingping, ZHOU Zengke. Valuation of ecosystem services based on multi-source remote sensing data:A case study of Hebei Province[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(4): 180-186.
[13] LI Feng, CUI Ximin, YUAN Debao, WANG Qiang, WU Yajun. Extraction of the building region from airborne LiDAR point clouds under complex urban conditions[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(3): 85-89.
[14] LI Feng, GAO Zhao-Liang. A Hybrid Bayesian Network Classifier for Multi-source Remote Sensing Data in Land Use Classification[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(2): 47-52.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech