Please wait a minute...
 
Remote Sensing for Natural Resources    2024, Vol. 36 Issue (4) : 185-192     DOI: 10.6046/zrzyyg.2023265
|
Spatiotemporal evolution and origin of carbon stock in the West Dongting Lake National Nature Reserve over the last two decades
LONG Wenqin1(), ZHI Lu2,3(), GUO Yadi4, ZOU Bin5, ZENG Lizhi1, GAO Hao1
1. Hanshou County Natural Resources Bureau,Hanshou 415900, China
2. School of Geography and Tourism, Zhengzhou Normal University, Zhengzhou 450000, China
3. School of Data and Target Engineering, Information Engineering University, Zhengzhou 450000, China
4. Changde Natural Resources and Planning Bureau Information Center, Changde 415000, China
5. School of Geosciences and Info-physics, Central South University, Changsha 410083, China
Download: PDF(6169 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Analyzing the carbon stock in a terrestrial ecosystem is a key link for research on the global and regional carbon cycle. Assessing the long-time-series carbon stock in the West Dongting Lake National Nature Reserve will provide scientific data for regional ecological monitoring and management. Based on the land use data from 2000 to 2020, this study explored the spatiotemporal changes in the carbon stock of the nature reserve based on the carbon stock estimated using the InVEST model and identified key areas of carbon stock changes. The results indicate that in the past two decades, the carbon stock in the nature reserve exhibited a fluctuating upward trend, ranging from 113.5×104 to 125.7×104 tons. The carbon stock presented relative changing rates of less than 2% during this period, except for 2003, when the changing rate was 3.2%. Over the past two decades, the core zone of the nature reserve ranked first in carbon stock among subregions every year, followed by the pilot zones. The carbon stock in most areas of the nature reserve remained unchanged or changed slightly. Nevertheless, there still existed some areas with significant changes in the carbon stock. The key areas of carbon stock changes featured diverse spatial distribution patterns of carbon stock, such as concentrated, linear, and scattered patterns, with land use types in these areas exhibiting corresponding change intensities of carbon stock. The changes in the carbon stock in the pilot zones were greatly affected by human interference, while those in the core area were primarily related to precipitation. The results of this study will assist in scientifically promoting carbon neutrality and peak carbon dioxide emissions in the West Dongting Lake National Nature Reserve.

Keywords West Dongting Lake National Nature Reserve      carbon stock      InVEST      spatiotemporal distribution     
ZTFLH:  TP79  
Issue Date: 23 December 2024
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wenqin LONG
Lu ZHI
Yadi GUO
Bin ZOU
Lizhi ZENG
Hao GAO
Cite this article:   
Wenqin LONG,Lu ZHI,Yadi GUO, et al. Spatiotemporal evolution and origin of carbon stock in the West Dongting Lake National Nature Reserve over the last two decades[J]. Remote Sensing for Natural Resources, 2024, 36(4): 185-192.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2023265     OR     https://www.gtzyyg.com/EN/Y2024/V36/I4/185
Fig.1  General situation of the research area
土地利用
类型
地上碳
密度
地下密度 土壤碳
密度
死亡有机
物碳密度
耕地 5.42 1.96 146.20 1.0
林地 64.20 118.00 207.30 3.5
草地 0.82 0.87 89.00 1.0
水体 0.00 0.00 0.00 0.0
不透水面 7.61 1.52 34.33 0.0
Tab.1  Carbon density of each land cover type in West Dongting Lake(mg·C/km2)
Fig.2  Annual changes of carbon storage in West Dongting Lake from 2000 to 2020
Fig.3  Annual changes of the cultivated land and water body in West Dongting Lake from 2000 to 2020
Fig.4  Scatter plot between carbon storage and meteorological factors and landscape index in West Dongting Lake
Fig.5  Spatial distribution of carbon storage in West Dongting Lake from 2000 to 2020
Fig.6  Temporal and spatial distribution of annual changes of carbon storage in West Dongting Lake from 2000 to 2020
Fig.7  Frequency of carbon storage changes and land use changes for the key areas in West Dongting Lake from 2000 to 2020
Fig.8  Scatter plot of carbon storage and PD for key change areas in West Dongting Lake
[1] IPCC. Climate change 2021:The physical science basis,contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change[R]. Cambridge: Cambridge University Press, 2021
[2] 方精云, 朱江玲, 石岳. 生态系统对全球变暖的响应[J]. 科学通报, 2018, 63(2):136-140.
[2] Fang J Y, Zhu J L, Shi Y. The responses of ecosystems to global warming[J]. Chinese Science Bulletin, 2018, 63(2):136-140.
[3] 朱媛媛, 张瑞, 顾江, 等. “双碳”目标下长江中游城市群生态福利绩效变化的经济——环境效应[J]. 经济地理, 2023, 43(5):89-96.
doi: 10.15957/j.cnki.jjdl.2023.05.010
[3] Zhu Y Y, Zhang R, Gu J, et al. Economic and environmental effects of ecological well-being performance change of urban agglomeration in the middle reaches of the Yangtze River under the carbon peaking and carbon neutrality goals[J]. Economic Geography, 2023, 43(5):89-96.
doi: 10.15957/j.cnki.jjdl.2023.05.010
[4] 杨元合, 石岳, 孙文娟, 等. 中国及全球陆地生态系统碳源汇特征及其对碳中和的贡献[J]. 中国科学:生命科学, 2022, 52(4):534-574.
[4] Yang Y H, Shi Y, Sun W J, et al. Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality[J]. Scientia Sinica(Vitae). 2022, 52(4):534-574.
[5] Zhao J F, Liu D S, Zhu Y J, et al. A review of forest carbon cycle models on spatiotemporal scales[J]. Journal of Cleaner Production, 2022, 339:130692.
[6] 张祯祺, 蔡惠文, 张平平, 等. 基于GEE遥感云平台的三江源植被碳源/汇时空变化研究[J]. 自然资源遥感, 2023, 35(1):231-242.doi:10.6046/zrzyyg.2022042.
[6] Zhang Z Q, Cai H W, Zhang P P, et al. A GEE - based study on the temporal and spatial variations in the carbon source/sink function of vegetation in the Three-River Headwaters region[J]. Remote Sensing for Natural Resources, 2023, 35(1):231-242.doi:10.6046/zrzyyg.2022042.
[7] 汪涛, 朴世龙. 青藏高原陆地生态系统碳汇估算:进展、挑战与展望[J]. 第四纪研究, 2023, 43(2):313-323.
[7] Wang T, Piao S L. Estimate of terrestrial carbon balance over the Tibetan Plateau:Progresses,challenges and perspectives[J]. Quaternary Sciences, 2023, 43(2):313-323.
[8] 刘坤, 张慧, 孔令辉, 等. 陆地生态系统碳汇评估方法研究进展[J]. 生态学报, 2023, 43(10):4294-4307.
[8] Liu K, Zhang H, Kong L H, et al. An overview of terrestrial ecosystem carbon sink assessment methods towards achieving carbon neutrality in China[J]. Acta Ecologica Sinica, 2023, 43(10):4294-4307.
[9] 朴世龙, 何悦, 王旭辉, 等. 中国陆地生态系统碳汇估算:方法、进展、展望[J]. 中国科学:地球科学, 2022, 52(6):1010-1020.
[9] Piao S L, He Y, Wang X H, et al. Carbon sequestration estimation of terrestrial ecosystem in China:Method,progress and prospect[J]. Scientia Sinica (Terrae), 2022, 52(6):1010-1020.
[10] Yao Y T, Piao S L, Wang T. Future biomass carbon sequestration capacity of Chinese forests[J]. Science Bulletin, 2018, 63(17):1108-1117.
doi: 10.1016/j.scib.2018.07.015 pmid: 36658990
[11] 令狐大智, 罗溪, 朱帮助. 森林碳汇测算及固碳影响因素研究进展[J]. 广西大学学报(哲学社会科学版), 2022, 44(3):142-155.
[11] Linghu D Z, Luo X, Zhu B Z. Review on forest carbon sink measurement and influential factors of carbon sequestration[J]. Journal of Guangxi University(Philosophy and Social Science), 2022, 44(3):142-155.
[12] 隋玉正, 孙大鹏, 李淑娟, 等. 碳储存变化背景下东营市海岸带生态系统保护修复[J]. 生态学报, 2021, 41(20):8112-8123.
[12] Sui Y Z, Sun D P, Li S J, et al. Study of coastal zone ecosystem restoration in the context of carbon storage change:A case of Dongying City[J]. Acta Ecologica Sinica, 2021, 41(20):8112-8123.
[13] Hwang J, Choi Y, Kim Y, et al. Analysis of the effect of environmental protected areas on land-use and carbon storage in a megalopolis[J]. Ecological Indicators, 2021, 133:108352.
[14] 刘洋, 张军, 周冬梅, 等. 基于InVEST模型的疏勒河流域碳储量时空变化研究[J]. 生态学报, 2021, 41(10):4052-4065.
[14] Liu Y, Zhang J, Zhou D M, et al. Temporal and spatial variation of carbon storage in the Shule River Basin based on InVEST model[J]. Acta Ecologica Sinica, 2021, 41(10):4052-4065.
[15] 韩玉, 丁素婷, 杨太保. 山西南部中条山生态系统碳储量时空分布及驱动因素[J]. 中国环境科学, 2023, 43(3):1298-1306.
[15] Han Y, Ding S T, Yang T B. Spatial and temporal distribution and driving factors of carbon storage in Zhongtiao Mountain ecosystem in southern Shanxi Province[J]. China Environmental Science, 2023, 43(3):1298-1306.
[16] 杨潋威, 赵娟, 朱家田, 等. 基于PLUS和InVEST模型的西安市生态系统碳储量时空变化与预测[J]. 自然资源遥感, 2022, 34(4):175-182.doi:10.6046/zrzyyg.2021348.
[16] Yang L W, Zhao J, Zhu J T, et al. Spatial-temporal change and prediction of carbon stock in the ecosystem of Xi’an based on PLUS and InVEST models[J]. Remote Sensing for Natural Resources, 2022, 34(4):175-182.doi:10.6046/zrzyyg.2021348
[17] 丁岳, 王柳柱, 桂峰, 等. 基于InVEST模型和PLUS模型的环杭州湾生态系统碳储量[J]. 环境科学, 2023, 44(6):3343-3352.
[17] Ding Y, Wang L Z, Gui F, et al. Ecosystem carbon storage in Hangzhou Bay area based on InVEST and PLUS models[J]. Environmental Science, 2023, 44(6):3343-3352.
[18] 张猛, 陈淑丹, 林辉, 等. 洞庭湖湿地净初级生产力估算研究[J]. 遥感学报, 2023, 27(6):1454-1466.
[18] Zhang M, Chen S D, Lin H, et al. Net primary productivity estimation of Dongting Lake wetland[J]. National Remote Sensing Bulletin, 2023, 27(6):1454-1466.
[19] Zhang M, Yuan N Q, Lin H, et al. Quantitative estimation of the factors impacting spatiotemporal variation in NPP in the Dongting Lake wetlands using Landsat time series data for the last two decades[J]. Ecological Indicators, 2022, 135:108544.
[20] Zhou W Q, Wang J L, Han Y, et al. Scenario simulation of the relationship between land-use changes and ecosystem carbon storage:A case study in Dongting Lake Basin,China[J]. International Journal of Environmental Research and Public Health, 2023, 20(6):4835.
[21] An X X, Jin W P, Long X R, et al. Spatial and temporal evolution of carbon stocks in Dongting Lake wetlands based on remote sensing data[J]. Geocarto International, 2022, 37(27):14983-15009.
[22] 刘晓辉, 姜明, 朱庆龙, 等. 吉林莫莫格国家级自然保护区边界和功能区范围调整初探[J]. 湿地科学, 2021, 19(5):527-533.
[22] Liu X H, Jiang M, Zhu Q L, et al. Adjustment of boundary and domain of functional areas of Momoge national nature reserve,Jilin Province[J]. Wetland Science, 2021, 19(5):527-533.
[1] ZHAO Qiang, WANG Tianjiu, WANG Tao, CHENG Sudan. InVEST model-based analysis of spatiotemporal evolution characteristics of habitat quality in the ecological green integrated demonstration area, Yangtze River Delta[J]. Remote Sensing for Natural Resources, 2024, 36(3): 187-195.
[2] WU Bingjie, WEN Guangchao, ZHAO Meijuan, XIE Hongbo, FENG Yajie, JIA Lin. Analyzing the comprehensive evolutionary characteristics of the ecological environment in the Bayin River basin based on Landsat data[J]. Remote Sensing for Natural Resources, 2024, 36(1): 227-234.
[3] YANG Lianwei, ZHAO Juan, ZHU Jiatian, LIU Lei, ZHANG Ping. Spatial-temporal change and prediction of carbon stock in the ecosystem of Xi’an based on PLUS and InVEST models[J]. Remote Sensing for Natural Resources, 2022, 34(4): 175-182.
[4] LI Bo, LIN Wenpeng, LI Lubing. SDG15-oriented analysis on the spatiotemporal dynamics of ecosystem services in Qianjiangyuan National Park[J]. Remote Sensing for Natural Resources, 2022, 34(4): 243-253.
[5] Ma Xiuqiang, Peng Ling, Xu Suning, Ding Zhilei. Application of GF-2 satellite data to mine geological environment investigation in Daye, Hubei Province[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(s1): 127-131.
[6] GAO Hui, ZHANG Jinghua, ZHANG Jianlong. Remote sensing ecological environment survey of county area based on ZY1-02C: A case study of Puge County[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(s1): 144-150.
[7] LI Haiying. Application of domestic high resolution remote sensing data to environmental geological survey[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(s1): 46-51.
[8] DAI Jingjing, WANG Denghong, WU Yanan. Investigation of rare metal mine using high resolution remote sensing data: A case study of No. 414 rare metal mine in Yichun, Jiangxi Province[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 104-110.
[9] WANG Ruiguo. Remote sensing investigation and analysis of geological disasters in the Wudong coal mine based on WorldView-2 data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(2): 132-138.
[10] MAO Yujing, ZHAO Zhifang, WU Wenchun, WANG Fengde. Remote sensing investigation of water erosion desertification and cause in Yunnan Province[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(1): 123-129.
[11] NAN Jun-xiang, ZHAO Zhi-fang, HONG You-tang, DU Rui-ling. Remote Sensing Investigation of Coal Mines in Xuanwei of Yunnan Province for Their Development[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(2): 121-124.
[12] LIU Shi-Yang, ZHANG Wei.
The Evaluation of Ore Prospecting Potential by Using Remote Sensing Technology in East Kunlun-Tuotuohe Section along the Qinghai-Tibet Railway
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(1): 91-96.
[13] ZHAO Zhi-Fang, DANG Wei, WANG Rui-Xue, YU Qi-Fen. A Remote Sensing Stability Assessment Study of the Geological Environment Based on the Evidence Weight Method[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(s1): 9-13.
[14] ZHANG Rui-Jiang, ZHAO Fu-Yue, FANG Hong-Bin, ZENG Fu-Nian. Remote Sensing Survey of Existing Snowlines in the Past 30 Years in Qinghai-Tibet Plateau[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(s1): 59-63.
[15] CHEN You-Ming, LIU Tong-Qing, YANG Ze-Dong, HUANG Yan, YANG Yang. The Application of Landsat Images to the Investigation and Evaluation of Land Use[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(s1): 108-112.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech