Please wait a minute...
 
国土资源遥感  2012, Vol. 24 Issue (1): 28-35    DOI: 10.6046/gtzyyg.2012.01.06
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
一种改进的SAR干涉图综合滤波算法研究
宋瑞1, 刘广2, PERSKI Zbigniew3, 郭华东2
1. 北京航空航天大学仪器科学与光电工程学院, 北京 100191;
2. 中国科学院对地观测与数字地球科学中心, 北京 100094;
3. Polish Geological Institute National Research Institute, Carpathian Branch, Poland 31560
Research on an Improved Integrated Filtering Algorithm of SAR Interferogram
SONG Rui1, LIU Guang2, PERSKI Zbigniew3, GUO Hua-dong2
1. School of Instrumentation Science and Opto-electronics Engineering, Beijing University of Aeronautics & Astronautics, Beijing 100191, China;
2. Center for Earth Observation and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China;
3. Polish Geological Institute-National Research Institute, Carpathian Branch 31560, Poland
全文: PDF(4623 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 SAR干涉图作为相位信息的载体,其质量直接影响对研究区域形变状况的进一步分析,采取有效的滤波算法能抑制干涉图相位噪声,提高干涉测量精度。在获得的干涉相位图中,由于矿区开采而造成的地表沉降会体现出近环状相位条纹的特征。针对这一特点,对传统的基于梯度的滤波算法做出了改进,并结合Goldstein频域滤波和改进的梯度自适应滤波,提出了一种适用于矿区沉降形成的SAR干涉相位模式滤波方法。选取河北峰峰煤矿的PALSAR干涉相位图作为实验数据,对该滤波方法做出了详细的性能评价和对比。结果表明,采用本文提出的综合滤波方法在显著降低实验区SAR干涉图相位噪声的同时,也很好地保持了相位分辨率,使由于矿区沉降而造成的形变相位环的边缘形态更加清晰。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
党青
杨武年
关键词 植被覆盖度归一化差值植被指数动态变化    
Abstract:The interferogram with SAR phase information is the key factor that directly affects the further analysis of the deformation in the experimental area. Effective filter algorithm can suppress phase noise in the interferogram and improve the precision of the interferometry. In the obtained phase images, the characteristics of nearly annular stripe show the surface subsidence caused by coal mining. The authors therefore improve the original gradient-based filter algorithm firstly, and then combine Goldstein filter with the improved gradient-based adaptive filter, making it perform more effectively in SAR interference phase mode from mining subsidence. In the experiment the authors selected the PALSAR interferogram data of the Fengfeng coal mine in Hebei Province to evaluate the detailed performance of such filtering methods. Experimental results show that the edge of deformation stripe in phase image is clearer, suggesting the validity of the integrated filtering algorithm which is characterized by good denoising effect and nice preservation of phase resolution.
Key wordsVegetation coverage    Normalized difference vegetation index (NDVI)    Dynamic change
收稿日期: 2011-06-02      出版日期: 2012-03-07
: 

TP 79

 
基金资助:

科技部中国与波兰政府间科技合作项目(编号: 3417)、国家自然科学基金资助项目(编号: 41001264)以及中国科学院对地观测与数字地球科学中心数字地球科学平台重大项目(编号: DESP01-04-10)共同资助。

引用本文:   
宋瑞, 刘广, PERSKI Zbigniew, 郭华东. 一种改进的SAR干涉图综合滤波算法研究[J]. 国土资源遥感, 2012, 24(1): 28-35.
SONG Rui, LIU Guang, PERSKI Zbigniew, GUO Hua-dong. Research on an Improved Integrated Filtering Algorithm of SAR Interferogram. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(1): 28-35.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2012.01.06      或      https://www.gtzyyg.com/CN/Y2012/V24/I1/28
[1] Graham L C,Synthetic Interferometer Radar for Topographic Mapping[J].Proc IEEE,1974,62(6):763-768.
[2] Rodriguez E,Martin J M.Theory and Design of Interferometric Synthetic Aperture Radars[J].IEE Proc:F,1992,139(2):147-159.
[3] Oravecz K I.Improved Prediction of Surface Subsidence Using the Infuence Function Approach[C]//Sangorm Symposium:The Effect of Underground Mining on Surface,1986:73-80.
[4] Alejano L R,Ranirez-Oyanguren P,Taboada J,et al.Numerical Prediction of Subsidence Phenomena Due to Flat Coal Seam Mining[J].International Journal of Rock Mechanics and Mining Sciences,1998,35(4):440-441.
[5] Strozzi T,Wegmuller U,Werner C L,et al.JERS SAR Interferometry for Land Subsidence Monitoring[J].IEEE Transactions on Geoscience and Remote Sensing,2003,41(7):1702-1703.
[6] Chang Z Q,Gong H L,Zhang J F,et al.A Feasible Approach for Improving Accuracy of Ground Deformation Measured by D-InSAR[J].Journal of China University of Mining and Technology,2007,17(2):262-266.
[7] Chang H C,Ge L L,Rizos C.DInSAR for Mine Subsidence Monitoring Using Multi-source Satellite SAR Images[C]//Geoscience and Remote Sensing Symposium.Seoul,Korea,2005.
[8] Perski Z.Application of SAR Imagery and SAR Interferometry in Digital Geological Cartography[M]//Ostaficzuk S.The Current role of GeologicalMapping in Geoscience.Netherlands Springer,Nato Science Series,2005,56:225-244.
[9] Wright P,Stow R.Detecting Mining Subsidence from Space[J].International Journal of Remote Sensing,1999,20(6):1183-1188.
[10] Lee J S,Papathanassiou K P,Ainsworth T L,et al.A New Technique for Noise Filtering of SAR Interferometric Phase Images[J].IEEE Transactions on Geoscience and Remote Sensing,1998,36(5):1456-1465.
[11] Joo T H,Held D N.SAR Speckle Noise Reduction Using Wiener filter[J].Proc of the NASA Symp on Math Pattern Recognition and Image Analysis,1983,295-310.
[12] Tates M,Nasrabadi N,Kwon H,et al.Wiener Filter-based Change Detection for SAR Imagery[J].Proceedings of SPIE,2006,6237:62370N1-62370N8.
[13] 王晓丹,吴崇明.基于MATLAB的系统分析与设计[M].西安:西安电子科技大学出版社,2000:9-10.
[14] Gabbouj M,Coyle E J,Gallagher N C.An Overview of Median and Stack Filtering[J].Circuit Systems Signal Processing,1992,11(1):7-45.
[15] Rees W G,Satchell M J F.The Effect of Median Filtering on Synthetic Aperture Radar Images[J].International Journal of Remote Sensing,1997,11(3):2887-2893.
[16] Eichel P H,Ghiglia D C,et al.Spotlight SAR Inter-ferometric Change Detection[R].Sandia National Labs Tech Report,1993:2539-2546.
[17] 林卉,赵长胜,杜培军,等.InSAR干涉图滤波方法研究[J].测绘学报,2005,34(2):113-117。
[18] Goldstein R M,Werner C L.Radar Interferogram Filtering for Geophysical Applications[J].Geophysical Research Letters,1998,25(21):4035-4038.
[19] Perski Z.Application of SAR Imagery and SAR Interferometry in Digital Geological Cartography[J].The Current Role of Geological Mapping in Geoscience,Netherlands:Springer,Nato Science Series,2005.
[20] Liu G,Guo H D,Ramon H,et al.The Application of InSAR Technology to Mining Area Subsidence Monitoring[J].Remote Sensing for Land and Resources,2008(2):51-55.
[21] Glodstein R M,Zebker H A,Werner C L.Satellite Radar Interferometry:Two-dimensional Phase Unwrapping[J].Radio Science,1988,23(4):713-720.
[22] 桑会勇,郭华东,韩春明,等.一种基于梯度信息的小波SAR图像滤波方法[J].测绘通报,2005(2):17-21.
[1] 晋成名, 杨兴旺, 景海涛. 基于RS的陕北地区植被覆盖度变化及驱动力研究[J]. 自然资源遥感, 2021, 33(4): 258-264.
[2] 陈虹, 郭兆成, 贺鹏. 1988—2018年间洱海流域植被覆盖度时空变换特征探究[J]. 国土资源遥感, 2021, 33(2): 116-123.
[3] 程筱茜, 洪友堂, 陈劲松, 叶宝莹. 基于ESTARFM的内陆湖泊遥感动态变化监测[J]. 国土资源遥感, 2020, 32(3): 183-190.
[4] 程宇琪, 王雨晴, 孙静萍, 张成福. 多伦县草原植被覆盖与蒸散量时空变化及其关系[J]. 国土资源遥感, 2020, 32(1): 200-208.
[5] 彭继达, 张春桂. 基于高分一号遥感影像的植被覆盖遥感监测——以厦门市为例[J]. 国土资源遥感, 2019, 31(4): 137-142.
[6] 赖家明, 杨武年. 基于RS的川西天然林区近29年植被覆盖动态变化[J]. 国土资源遥感, 2018, 30(4): 132-138.
[7] 蒙永辉, 王集宁, 张丽霞, 罗梅. 1979—2012年莱州湾南岸海水入侵与区域海岸线变动时空耦合分析[J]. 国土资源遥感, 2018, 30(3): 189-195.
[8] 桑潇, 国巧真, 潘应阳, 付盈. 基于TM和OLI数据山西省潞城市土地利用动态变化分析与预测[J]. 国土资源遥感, 2018, 30(2): 125-131.
[9] 张晓东, 刘湘南, 赵志鹏, 赵银鑫, 马玉学, 刘海燕. 基于像元二分法的盐池县植被覆盖度与地质灾害点时空格局分析[J]. 国土资源遥感, 2018, 30(2): 195-201.
[10] 张宇婷, 张振飞, 张志. 新疆大南湖荒漠区1992—2014年间植被覆盖度遥感研究[J]. 国土资源遥感, 2018, 30(1): 187-195.
[11] 魏本赞, 付丽华, 范芳, 张策, 揭文辉, 董双发. 1998—2015年新疆玛纳斯河流域湿地动态变化遥感监测[J]. 国土资源遥感, 2017, 29(s1): 90-94.
[12] 张成才, 罗蔚然, 窦小楠, 王金鑫. 应用Landsat8数据改进FCD模型方法[J]. 国土资源遥感, 2017, 29(4): 33-38.
[13] 郑朝菊, 曾源, 赵玉金, 赵旦, 吴炳方. 近15年中国西南地区植被覆盖度动态变化[J]. 国土资源遥感, 2017, 29(3): 128-136.
[14] 刘英, 侯恩科, 岳辉. 基于MODIS的神东矿区植被动态监测与趋势分析[J]. 国土资源遥感, 2017, 29(2): 132-137.
[15] 何海燕, 凌飞龙, 汪小钦, 梁志锋. 基于雷达植被指数的水土流失区植被覆盖度估测[J]. 国土资源遥感, 2015, 27(4): 165-170.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发