Please wait a minute...
 
国土资源遥感  2012, Vol. 24 Issue (4): 95-100    DOI: 10.6046/gtzyyg.2012.04.16
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
利用不同植被指数估算植被覆盖度的比较研究
徐爽1,2, 沈润平1, 杨晓月1,2
1. 南京信息工程大学气象灾害省部共建教育部重点实验室,南京 210044;
2. 南京信息工程大学遥感学院,南京 210044
A Comparative Study of Different Vegetation Indices for Estimating Vegetation Coverage Based on the Dimidiate Pixel Model
XU Shuang1,2, SHEN Run-ping1, YANG Xiao-yue1,2
1. Key Laboratory of Meteorological Disasters, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing 210044, China;
2. College of Remote Sensing, Nanjing University of Information Science and Technology, Nanjing 210044, China
全文: PDF(1792 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 选用蔬菜地和草地2种植被类型,利用ASD光谱仪实测二者在不同覆盖度下的光谱响应,分析了归一化植被指数(NDVI)、差值植被指数(DVI)、比值植被指数(RVI)、修正植被指数(MVI)、修改型土壤调节植被指数(MSAVI)以及全球环境监测植被指数(GEMI)等6种植被指数所用的最佳波段及其组合,进而研究了利用像元二分模型估算植被覆盖度时的不同植被指数的表现。结果表明,与蔬菜地植被指数相关系数较高的波段组合为620~740 nm谱段和780~900 nm谱段内波段的组合,与草地植被指数相关系数较高的波段组合为620~750 nm谱段和760~900 nm谱段内波段的组合,相关系数均达0.8以上; 在高光谱数据构建的植被指数和模拟卫星数据构建的植被指数中,用DVI和MSAVI估算植被覆盖度,平均总体精度分别达到83.7%和79.5%,与其他4种植被指数相比,这2种指数更适合于利用像元二分模型进行植被覆盖度的估算。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴莹
王振会
关键词 被动微波遥感地表发射率反演方法    
Abstract:ASD Field Spec Pro FRTM spectroradiometer was used to measure the spectral response of the vegetable and grass at different vegetation coverage levels. The data were applied to calculate six vegetation indices, i.e., NDVI (normalized difference vegetation index), DVI (difference vegetation index), RVI (ratio vegetation index), MVI (modified vegetation index), MSAVI (modified soil adjusted vegetation index) and GEMI (global environment monitoring index). Then the best combination of spectral bands was analyzed. Furthermore, the performance of different vegetation indices was investigated when they were used to estimate the vegetation coverage by using the dimidiate pixel model. The results show that, for the green vegetable, the best combinations of bands in the spectral region from 620 to 740 nm and from 780 to 900 nm have the best correlation with the vegetation index, whereas for the grass, the best combinations of bands are from 620 to 750 nm and from 760 to 900 nm, with the correlation coefficients of the two cases being all larger than 0.8. The bands of Landsat7 and HJ-1A CCD1 simulated according to the spectral response function were employed to calculate the six vegetation indices. The average overall accuracy for estimating the vegetation fraction by DVI and MSAVI is 83.7% and 79.5% respectively, indicating that they are superior to the other four vegetation indices as the input of vegetation index for the dimidiate pixel model.
Key wordspassive microwave remote sensing    land surface emissivity    retrieving approach
收稿日期: 2012-02-15      出版日期: 2012-11-13
: 

TP 79

 
基金资助:

国家重点基础研究发展计划 (973 计划) 项目(编号: 2010CB950701-1,2005CB121108-6)和江苏省高校"青蓝工程"项目共同资助。

通讯作者: 沈润平(1963-),男,教授,博士生导师。E-mail: rpshen@nuist.edu.cn。
引用本文:   
徐爽, 沈润平, 杨晓月. 利用不同植被指数估算植被覆盖度的比较研究[J]. 国土资源遥感, 2012, 24(4): 95-100.
XU Shuang, SHEN Run-ping, YANG Xiao-yue. A Comparative Study of Different Vegetation Indices for Estimating Vegetation Coverage Based on the Dimidiate Pixel Model. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(4): 95-100.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2012.04.16      或      https://www.gtzyyg.com/CN/Y2012/V24/I4/95
[1] Qi J,Cabot F,Moran M S,et al.Biophysical Parameter Estimations Using Multidirectional Spectral Measurements[J].Remote Sensing Of Environment,1995,54(1):71-83.

[2] Gitelson A A,Kaufman Y J,Stark R,et al.Novel Algorithms for Remote Estimation of Vegetation Fraction[J].Remote Sensing of Environment,2002,80(1):76-87.

[3] 党青,杨武年.近20年成都市植被覆盖度动态变化检测及原因分析[J].国土资源遥感,2011(4):121-125.

Dang Q,Yang W N.Dynamic Supervision and Reason Analysis of Vegetation Coverage Changes of Chengdu in the Past 20 Years[J].Remote Sensing for Land and Resource,2011(4):121-125(in Chinese with English Abstract).

[4] Wittich K P,Hansing O.Area-averaged Vegetative Cover Fraction Estimated from Satellite Data[J].International Journal of Biometerology,1995,38(4):209-215.

[5] 刁兆岩,徐立荣,冯朝阳,等.呼伦贝尔沙化草原植被覆盖度估算光谱模型[J].干旱区资源与环境,2012,26(2):139-144.

Diao Z Y,Xu L R,Feng C Y,et al.The Ground Spectral Model for Estimating Vegetation Coverage on Desertified Grassland,Hulunbeier,Inner Mongolia,China[J].Journal of Arid Land Resources and Environment,2012,26(2):139-144(in Chinese with English Abstract).

[6] 李登科,范建忠,王娟.陕西省植被覆盖度变化特征及其成因[J].应用生态学报,2010,21(11):2896-2903.

Li D K,Fan J Z,Wang J.Change Characteristics and Their Causes of Fractional Vegetation Coverage (FVC) in Shaanxi Province[J].Chinese Journal of Applied Ecology,2010,21(11):2896-2903(in Chinese with English Abstract).

[7] 刘瑞,王世新,周艺,等.基于遥感技术的县级区域环境质量评价模型研究[J].中国环境科学,2012,32(1):181-186.

Liu R,Wang S X,Zhou Y,et al.Ecological Environment Condition Evaluation Mode of County Region Based on Remote Sensing Techniques[J].China Environmental Science,2012,32(1):181-186(in Chinese with English Abstract).

[8] 廖春华,张显峰,孙权,等.基于HJ-1高光谱数据的植被覆盖度估测方法研究[J].遥感信息,2011(5):65-70.

Liao C H,Zhang X F,Sun Q,et al.Fractional Vegetation Cover Estimation Using HJ-1 Spaceborne Hyperspectral Data[J].Remote Sensing Information,2011(5):65-70(in Chinese with English Abstract).

[9] Jiang Z Y,Huete A R,Chen J,et al.Analysis of NDVI and Scaled Difference Vegetation Index Retrievals of Vegetation Fraction[J].Remote Sensing of Environment,2006,101(3):366-378.

[10] Small C.Estimation of Urban Vegetation Abundance by Spectral Mixture Analysis[J].International Journal of Remote Sensing,2001,22(7):1305-1334.

[11] Huang Z,Turner B J,Dury S J,et al.Estimating Foliage Nitrogen Concentration from HyMAP Data Using Continuum Removal Analysis[J].Remote Sensing of Environment,2004,93(1/2):18-29.

[12] Thenkabail P S,Enclona E A,Ashton M S,et al.Accuracy Assessments of Hyperspectral Waveband Performance for Vegetation Analysis Applications[J].Remote Sensing of Environment,2004,91(3/4):354-376.

[13] Rouse J W,Haas R H,Schell J A,et al.Monitoring Vegetation Systems in the Ggreat Plains with ERTS[C] //Third Earth Resources Technology Satellite-1 Symposium.Washington.DC.NASA,1973,1:309-317.

[14] Jordan C F.Derivation of Leaf-area Index from Quality of Light on the Forest Floor[J].Ecology,1969,50(4):663-666.

[15] Pearson R L,Miller D L.Remote Mapping of Standing Crop Biomass for Estimation of the Productivity of the Shortgrass Prairie[C] //Proceedings of the English International Symuposium on Remote Sensing of Environment,1972,2:1375-1381.

[16] McDaniel K C,Haas R H.Assessing Mesquite-grass Vegetation Condition from Landsat[J].Photogrammetric Engineering and Remote Sensing,1982,48(3):441-450.

[17] Qi J,Chenbouni A,Huete A R,et al.A Modified Soil Adjusted Vegetation Index[J].Remote Sensing of Environment,1994,48(2):119-126.

[18] Pinty B,Verstraete M M.GEMI:A Non-linear Index to Monitor Global Vegetation from Satellites[J].Vegetation,1992,101(1):15-20.

[19] [JP4] Zribi M,Le Hegarat-Mascle S,Taconet O,et al.Derivation of Wild Vegetation Cover Density in Semi-arid Regions:ERS2/SAR Evaluation[J].International Journal of Remote Sensing,2003,24(6):1335-1352.

[20] 李丽,童立强,李小慧.基于植被覆盖度的石漠化遥感信息提取方法研究[J].国土资源遥感,2010(2):59-62.

Li L,Tong L Q,Li X H.The Remote Sensing Information Extraction Method Based on Vegetation Coverage[J].Remote Sensing for Land and Resources,2010(2):59-62(in Chinese with English Abstract).
[1] 高晨, 徐健, 高丹, 王莉莉, 王野乔. 基于GF-1与实测光谱数据鄱阳湖丰水期总悬浮物浓度反演[J]. 国土资源遥感, 2019, 31(1): 101-109.
[2] 陆坤, 孟庆岩, 孙云晓, 孙震辉, 张琳琳. 基于GF-2卫星数据的孕穗期小麦叶面积指数反演——以河北省廊坊市为例[J]. 国土资源遥感, 2018, 30(1): 196-202.
[3] 刘瑶, 张文娟, 张兵, 甘甫平. 中红外大气强吸收通道的地表辐亮度图像模拟[J]. 国土资源遥感, 2017, 29(3): 98-103.
[4] 吴莹, 钱博, 王振会. 被动微波遥感观测资料干扰对地表参数反演的影响分析[J]. 国土资源遥感, 2017, 29(3): 176-181.
[5] 曹永兴, 薛志航. 基于高分辨率影像的城市地区气溶胶反演研究述评[J]. 国土资源遥感, 2016, 28(3): 1-6.
[6] 白淑英, 吴奇, 史建桥, 顾海敏. 青藏高原积雪深度时空分布与地形的关系[J]. 国土资源遥感, 2015, 27(4): 171-178.
[7] 孙知文, 于鹏珊, 夏浪, 武胜利, 蒋玲梅, 郭镭. 被动微波遥感积雪参数反演方法进展[J]. 国土资源遥感, 2015, 27(1): 9-15.
[8] 吴莹, 王振会, 翁富忠. 沙漠地区微波地表发射率年内变化规律与气候因子的关系分析[J]. 国土资源遥感, 2014, 26(3): 55-60.
[9] 周芳成, 宋小宁, 李召良. 地表温度的被动微波遥感反演研究进展[J]. 国土资源遥感, 2014, 26(1): 1-7.
[10] 吴莹, 王振会. 微波地表发射率模型研究进展[J]. 国土资源遥感, 2013, 25(4): 1-7.
[11] 马红章, 刘素美, 朱晓波, 孙根云, 孙林, 柳钦火. 基于被动微波遥感技术的玉米冠层叶面积指数反演[J]. 国土资源遥感, 2013, 25(3): 66-71.
[12] 吴莹, 王振会. 被动微波遥感反演地表发射率研究进展[J]. 国土资源遥感, 2012, 24(4): 1-7.
[13] 李欣欣, 张立新, 蒋玲梅. 山区地形对被动微波遥感影响的研究进展[J]. 国土资源遥感, 2011, 23(3): 8-13.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发