Please wait a minute...
 
国土资源遥感  2011, Vol. 23 Issue (3): 8-13    DOI: 10.6046/gtzyyg.2011.03.02
  综述 本期目录 | 过刊浏览 | 高级检索 |
山区地形对被动微波遥感影响的研究进展
李欣欣1,2, 张立新1,2, 蒋玲梅1,2
1. 北京师范大学/中国科学院遥感应用研究所遥感科学国家重点实验室,北京 100875;
2. 北京师范大学地理学与遥感科学学院,北京 100875
Advances in the Study of Mountainous Relief Effects on Passive Microwave Remote Sensing
LI Xin-xin1,2, ZHANG Li-xin1,2, JIANG Ling-mei1,2
1. State Key Laboratory of Remote Sensing Science, Jointly Sponsored by the Institute of Remote Sensing Applications of Chinese Academy of Sciences and Beijing Normal University, Beijing 100875, China;
2. School of Geography and Remote Sensing Science, Beijing Normal University, Beijing 100875, China
全文: PDF(690 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

随着土壤湿度与海水盐度卫星(SMOS)发射计划的顺利开展和AMSR-E(Advanced Microwave Scanning Radiometer-Earth Observing System)业务化运行服务之后,人类用星载微波辐射计监测土壤水分是空间技术上的又一次飞跃,但土壤水分的反演精度受到微波辐射计低空间分辨率观测像元的空间异质性和地形的影响,尤其山区地形对大尺度被动微波遥感观测影响显著,其中包括微波辐射的传输路径受海拔高度的影响,地表发射特性受地形坡度和坡向的影响,山体间的多次反射和地形的阴影效应也会改变地表的散射特性。目前,数项微波辐射地形效应的模拟研究已在国内外开展,并据此提出了一些简化的地形校正方法。为了使人们对该领域研究有一概括了解,基于电磁波辐射传输的物理机理和地表形态特征的统计分析,首先探讨了地形效应对微波辐射传输和地表微波辐射特征以及土壤水分反演算法的影响,然后通过地形在微波辐射研究中的最新进展综述,提出了目前研究中存在的问题以及进一步的研究方向。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词 城市公园湿地遥感图像数据融合景观空间格局    
Abstract

As SMOS(Soil Moisture and Ocean Salinity)mission has been carried out smoothly, and AMSR-E (Advanced Microwave Scanning Radiometer-Earth Observing System) services have been conducted, people have achieved another great leap forward in monitoring surface soil moisture by satellite-borne microwave radiometer in space technology. Since space resolution is coarse under satellite microwave radiometer, the accuracy of retrieving soil moisture has been conditioned by space heterogeneity and relief effects. Mountainous terrain on a larger scale than wavelength has such significant effects on passive remote sensing as altitude role in microwave transmission path, topographic slope angle and aspect effects on surface emissivity, and multi-reflection between mountains or shadow effect on the change in surface scatter characteristics. A number of studies on relief effects of microwave radiation have been carried out both at home and abroad, and some simple topographic correction methods have been advanced. Based on the physical mechanism of electromagnetic waves and the statistical analysis, the authors first investigated the relief effects on microwave radiation and inversion of soil moisture, then made a review of the newest advance in relief effect researches on passive microwave remote sensing, and finally pointed out problems existent in current studies as well as orientation for further studies.

Key wordsWetland of urban park    Remote sensing image    Data fusion    Landscape    Spatial pattern
收稿日期: 2010-12-14      出版日期: 2011-09-07
: 

TP 722.6

 
基金资助:

国家自然科学基金资助项目(编号: 41030534)及国家重点基础研究发展计划"973"项目(编号: 2007CB714403)。

作者简介: 李欣欣(1985- ),女,北京师范大学地理学与遥感科学学院博士生,研究方向为被动微波遥感。
引用本文:   
李欣欣, 张立新, 蒋玲梅. 山区地形对被动微波遥感影响的研究进展[J]. 国土资源遥感, 2011, 23(3): 8-13.
LI Xin-xin, ZHANG Li-xin, JIANG Ling-mei. Advances in the Study of Mountainous Relief Effects on Passive Microwave Remote Sensing. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(3): 8-13.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2011.03.02      或      https://www.gtzyyg.com/CN/Y2011/V23/I3/8


[1] Pierdicca Nazzareno,Pulvirenti Luca,Marzano Frank Silvio. Simulating Topographic Effects on Spaceborne Radiometric Observations Between L and X Frequency Bands
[J].IEEE Transactions on Geoscience Remote Sensing,2010,48(1):273-282.

[2] Guo Ying.Study on Terrain Correction of Passive and Active Microwave Measurements and Soil Moisture Retrieval Combining Passive and Active Microwave Remote Sensing
[D].Beijing:Chinese Academy of Sciences,2009.

[3] Duguay Claude R.Radiation Modeling in Mountainous Terrain Review and Status
[J].Mountain Research and Development,1993,13(4):339-357.

[4] Oliphant A J,Spronken-Smith R A,Sturman A P,et al.Spatial Variability of Surface Radiation Fluxes in Mountainous Terrain
[J].Journal of Applied Meteorology,2003,42(1):113-128.

[5] Kerr Y,Secherre F,Lastent J,et al.SMOS:Analysis of Perturbing Effect Cover Land Surfaces
[C]//Proceedings of IEEE International Geoscienceand Remote Sensing Symposium,Toulouse,France,2003:908-910.

[6] Mätzler C,Standley A.Technical Note:Relief Effects for Passive Microwave Remote Sensing
[J].International Journal of Remote Sensing,2000,21(12):2403-2412.

[7] Sandells M J,Davenport I J,Gurney R J.Passive L-band Microwave Soil Moisture Retrieval Error Arising from Topography in Otherwise Uniform Scenes
[J].Advance Water Resource,2008,31(11):1433-1443.

[8] Flores A N,Ivanov V Y,Entekhabi D,et al.Impact of Hillslope-scale Organization of Topography,Soil Moisture,Soil Temperature,and Vegetation on Modeling Surface Microwave Radiation Emission
[J].IEEE Transactions on Geoscience Remote Sensing,2009,47(8):2557-2571.

[9] Pulvirenti Luca,Pierdicca Nazzareno,Marzano Frank S.Topographic Effects on the Surface Emissivity of a Mountainous Area Observed by a Spaceborne Microwave Radiometer
[J].Sensors,2008,8(3):1459-1474.

[10] Shi Jian-cheng,Jiang Ling-mei,Zhang Li-xin.A Parameterized Multi-frequency-polarization Surface Emission Model
[J].Journal of Remote Sensing,2006,10(4):502-514.

[11] Utku C,Le Vine D M.Topography Effects on Brightness Temperature in Remote Sensing at L-band
[EB/OL].http://www.ursi.org/proceedings/procGA08/papers/F01p7.pdf.

[12] Talone M,Camps A,Monerris A,et al.Surface Topography and Mixed-pixel Effects on the Simulated L-band Brightness Temperatures
[J].IEEE Transactions on Geoscience Remote Sensing,2007,45(7):1996-2003.

[13] Li Xin-xin,Zhang Li-xin,Jiang Ling-mei,et al.Simulation and Measurement of Relief Effects on Passive Microwave Radiation
[J].Journal of Remote Sensing,2011,15(1):100-110.

[14] Kim Gwangseob,Barros Ana P.Space-time Characterization of Soil Moisture from Passive Microwave Remotely Sensed Imagery and Ancillary Data
[J].Remote Sensing of Environment,2002,81(2/4):393-403.

[1] 张大明, 张学勇, 李璐, 刘华勇. 一种超像素上Parzen窗密度估计的遥感图像分割方法[J]. 自然资源遥感, 2022, 34(1): 53-60.
[2] 李轶鲲, 杨洋, 杨树文, 王子浩. 耦合模糊C均值聚类和贝叶斯网络的遥感影像后验概率空间变化向量分析[J]. 自然资源遥感, 2021, 33(4): 82-88.
[3] 李特雅, 宋妍, 于新莉, 周圆锈. 卫星热红外温度反演钢铁企业炼钢月产量估算模型[J]. 自然资源遥感, 2021, 33(4): 121-129.
[4] 王美雅, 徐涵秋. 中外超大城市热岛效应变化对比研究[J]. 自然资源遥感, 2021, 33(4): 200-208.
[5] 刘万军, 高健康, 曲海成, 姜文涛. 多尺度特征增强的遥感图像舰船目标检测[J]. 自然资源遥感, 2021, 33(3): 97-106.
[6] 王小龙, 闫浩文, 周亮, 张黎明, 党雪薇. 利用SVM分类Landsat影像的朝鲜主要城市建设用地时空特征分析[J]. 国土资源遥感, 2020, 32(4): 163-171.
[7] 蒋蕾, 韩维峥, 孙丽娜. 基于景观生态风险的区域生态屏障建设研究[J]. 国土资源遥感, 2020, 32(4): 219-226.
[8] 王小兵. 融合提升小波阈值与多方向边缘检测的矿区遥感图像去噪[J]. 国土资源遥感, 2020, 32(4): 46-52.
[9] 刘尚旺, 崔智勇, 李道义. 基于Unet网络多任务学习的遥感图像建筑地物语义分割[J]. 国土资源遥感, 2020, 32(4): 74-83.
[10] 李国庆, 黄菁华, 刘冠, 李洁, 翟博超, 杜盛. 基于Landsat8卫星影像土地利用景观破碎化研究——以陕西省延安麻塔流域为例[J]. 国土资源遥感, 2020, 32(3): 121-128.
[11] 李宇, 肖春姣, 张洪群, 李湘眷, 陈俊. 深度卷积融合条件随机场的遥感图像语义分割[J]. 国土资源遥感, 2020, 32(3): 15-22.
[12] 蔡之灵, 翁谦, 叶少珍, 简彩仁. 基于Inception-V3模型的高分遥感影像场景分类[J]. 国土资源遥感, 2020, 32(3): 80-89.
[13] 白晓琼, 王汶, 林子彦, 张耀军, 王昆. 基于高空间分辨率遥感影像的三维绿度度量[J]. 国土资源遥感, 2019, 31(4): 53-59.
[14] 梅昭容, 李云驹, 康翔, 魏善宝, 潘剑君. 基于移动窗口分析法的矿区景观格局时空演变研究[J]. 国土资源遥感, 2019, 31(4): 60-68.
[15] 叶发茂, 罗威, 苏燕飞, 赵旭青, 肖慧, 闵卫东. 卷积神经网络特征在遥感图像配准中的应用[J]. 国土资源遥感, 2019, 31(2): 32-37.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发