Please wait a minute...
 
国土资源遥感  2013, Vol. 25 Issue (4): 1-7    DOI: 10.6046/gtzyyg.2013.04.01
  综述 本期目录 | 过刊浏览 | 高级检索 |
微波地表发射率模型研究进展
吴莹1,2, 王振会1,2
1. 南京信息工程大学气象灾害省部共建教育部重点实验室, 南京 210044;
2. 南京信息工程大学大气物理学院, 南京 210044
Advances in the study of microwave land surface emissivity model
WU Ying1,2, WANG Zhenhui1,2
1. Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing 210044, China;
2. School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044, China
全文: PDF(573 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 地表发射率是陆面资料同化系统中的关键参数。微波地表发射率模型在卫星资料同化系统中的使用显著提高了大部分地表状况下的卫星微波资料的利用率。该文从物理模型和半经验模型2个方面综述了微波地表发射率模型研究的主要进展及其研究中存在的问题,并对这些方法的优、缺点分别进行了评价; 最后,对微波地表发射率模型的研究前景进行了展望,认为可以从提高输入参数的准确性、模型的假设条件和加强微波辐射传输过程的机理研究等方面提高模型的模拟精度,并建议进一步考证半经验模型在当前卫星测量数据中的应用,并重视模型间的对比和模型定量评价方法的研究。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈卓
马洪超
李云帆
关键词 LiDAR角度纹理信息(ATS)道路交叉口Snake    
Abstract:The land surface emissivity is a key parameter in the land data assimilation system, and the uses of the satellite microwave data under most land conditions are significantly increasing by implementing the microwave land emissivity model(MLEM)in the satellite data assimilation system. This paper systematically reviews the progress of MLEM in the aspects of physical model and semi-empirical model. The main advantages and limitations of the two types of models are also discussed. Finally, the development tendencies of simulating microwave land emissivity (MLE) by models are proposed, such as improving the accuracy of the inputs, taking assumptions of models into account, and strengthening the study of the microwave radiative transfer process. Some proposals are also put forward concerning the improvement of the method for further research on the semi-empirical model in the application of satellite data and the attention to the contrast between the models and the quantitative evaluation methods of models.
Key wordsLiDAR    angular texture signal(ATS)    road intersection    Snake
收稿日期: 2012-12-28      出版日期: 2013-10-21
:  TP79  
  TP722.6  
基金资助:国家自然科学基金项目(编号: 41275043,40875016,41305033)、国家863计划项目"国家高技术研究发展计划"(编号: 2007AA061901)、江苏高校优势学科建设工程项目(编号: PAPD)和南京信息工程大学校科研预研项目(编号: 2012X008)共同资助。
作者简介: 吴莹(1980- ),女,讲师,博士,主要从事大气探测与大气遥感方面的教学和研究。E-mail: wuying_nuist@163.com。
引用本文:   
吴莹, 王振会. 微波地表发射率模型研究进展[J]. 国土资源遥感, 2013, 25(4): 1-7.
WU Ying, WANG Zhenhui. Advances in the study of microwave land surface emissivity model. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(4): 1-7.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2013.04.01      或      https://www.gtzyyg.com/CN/Y2013/V25/I4/1
[1] Weng F,Liu Q.Satellite data assimilation in numerical weather prediction models,part I:Forward radiative transfer and Jacobian modeling in cloudy atmospheres[J].Journal of Atmospheric Science,2003,60(21):2633-2646.
[2] Errico R M,Ohring G,Bauer P,et al.Assimilation of satellite cloud and precipitation observations in numerical weather prediction models[J].Journal of Atmospheric Science,2007,64(11):3737-3741.
[3] 吴莹,王振会.被动微波遥感反演地表发射率研究进展[J].国土资源遥感,2012,24(4):1-7. Wu Y,Wang Z H.Advances in the study of land surface emissivity retrieval from passive microwave remote sensing[J].Remote Sensing for Land and Resources,2012,24(4):1-7.
[4] Weng F,Zhu T,Yan B.Satellite data assimilation in numerical weather prediction models,part II:Uses of rain affected microwave radiances for hurricane vortex analysis[J].Journal of Atmospheric Science,2007,64(11):3910-3925.
[5] Weng F,Yan B,Grody N C.A microwave land emissivity model[J].Journal of Geophysical Research,2001,106(17):20115-20123.
[6] Wang J R,ONeill P E,Jackson T J,et al.Multi-frequency measurements of the effects of soil moisture,soil texture,and surface roughness[J].IEEE Transactions on Geoscience and Remote Sensing,1983,21(1):44-51.
[7] Fung A K,Li Z,Chen K S.Back scattering from a randomly rough dielectric surface[J].IEEE Transactions on Geoscience and Remote Sensing,1992,30(2):195-200.
[8] Shi J,Chen K S,Li Q,et al.A parameterized surface reflectivity model and estimation of bare-surface soil moisture with L-band radiometer[J].IEEE Transactions on Geoscience and Remote Sensing,2002,40(12):2674-2686.
[9] Chen K S,Wu T D,Tsang L,et al.Emission of rough surfaces calculated by the integral equation method with comparison to three-dimensional moment method simulations[J].IEEE Transactions on Geoscience and Remote Sensing,2003,41(1):90-101.
[10] 施建成,蒋玲梅,张立新.多频率多极化地表辐射参数化模型[J].遥感学报,2006,10(4):502-514. Shi J C,Jiang L M,Zhang L X.A parameterized multi-frequency-polarization surface emission model[J].Journal of Remote Sensing,2006,10(4):502-514.
[11] Macelloni G,Nesti G,Pampaloni P,et al.Experimental validation of surface scattering and emission models[J].IEEE Transactions on Geoscience and Remote Sensing,2000,38(1):459-469.
[12] Li Q,Tsang L,Shi J,et al.Application of physics-based two-grid method and sparse matrix canonical grid method for numerical simulations of emissivities of soils with rough surfaces at microwave frequencies[J].IEEE Transactions on Geoscience and Remote Sensing,2000,38(4):1635-1643.
[13] Mo T,Choudhury B J,Schmugge T J,et al.A model for microwave emission from vegetation[J].Journal of Geophysical Research,1982,87(13):11229-11237.
[14] Karam M A,Fung A K,Lang,R H,et al.A microwave scattering model for layered vegetation[J].IEEE Transactions on Geoscience and Remote Sensing,1992,30(4):767-784.
[15] Jackson T J,Schmugge T J.Vegetation effects on the microwave emission of soils[J].Remote Sensing of Environment,1991,36(3):203-212.
[16] Wigneron J P,Calvet J C,Kerr Y H,et al.Microwave emission of vegetation:Sensitivity to leaf characteristics[J].IEEE Transactions on Geoscience and Remote Sensing,1993,31(3):716-726.
[17] Wigneron J P,Kerr Y H,Chanzy A,et al.Inversion of surface parameters from passive microwave measurements over a soybean field[J].Remote Sensing of Environment.1993,46(1):61-72.
[18] Kurum M,Lang R H,O'Neill P E,et al.A first-order radiative transfer model for microwave radiometry of forest canopies at L-band[J].IEEE Transactions on Geoscience and Remote Sensing,2011,49(9):3167-3179.
[19] Ferrazzoli P,Guerriero L.Passive microwave remote sensing of forests:A model investigation[J].IEEE Transactions on Geoscience and Remote Sensing,1996,34(2):433-443.
[20] Ferrazzoli P,Guerriero L,Wigneron J P.Simulating L-band emission of forests in view of future satellite applications[J].IEEE Transactions on Geoscience and Remote Sensing,2002,40(12):2700-2708.
[21] Martínez-Vázquez A,Camps A,Duffo N,et al.Full polarimetric emissivity of vegetation-covered soils:Vegetation structure effects[C]// Proceeding of IEEE International Geoscience and Remote Sensing Symposium,2002:3542-3544.doi:10.1109/IGARSS.2002.1027242.
[22] Vecchia A D,Saleh K,Ferrazzoli P,et al.Simulating L-band emission of coniferous forests using a discrete model and a detailed geometrical representation[J].IEEE Transactions on Geoscience and Remote Sensing,2006,3(3):364-368.
[23] Tsang L,Kong J A,Shin R T.Theory of microwave remote sensing [M].New York:John Wiley,1985:498.
[24] Fung A K.Microwave scattering and emission models and their applications[M].Norwood,MA:Artech House Inc,1994:419-423.
[25] Tsang L,Kong J A,Ding K H,et al.Scattering of electromagnetic waves Vol.2[M].New York:Wiley Interscience,2001.
[26] Tjuatja S,Fung A K,Dawson M S.An analysis of scattering and emission from sea ice[J].Remote Sensing Review,1993,7(1):83-106.
[27] Boyarskii D A,Etkin V S.Two flow model of wet snow microwave emissivity[C]//Proceeding of IEEE International Geoscience and Remote Sensing Symposium,Pasadena,CA,1994:2068-2070. doi:10.1109/IGARSS.1994.399655.
[28] Jiang L,Shi J,Tjuatja S,et al.A parameterized multiple-scattering model for microwave emission from dry snow[J].Remote Sensing of Environment,2007,111(2/3):357-366.
[29] Jiang L,Tjuatja S,Shi J,et al.Modeling of emission from snow-covered ground for passive microwave remote sensing[C]//Proceeding of IEEE International Geoscience and Remote Sensing Symposium,2009:310-313.doi:10.1109/IGARSS.2009.5418072.
[30] Du J,Shi J,Wu S.A comparison of a second-order snow model with field observations[C]//Proceeding of IEEE International Geoscience and Remote Sensing Symposium,2005:2649-2651.doi:10.1109/IGARSS.2005.1525610.
[31] Du J,Shi J,Tjuatja S,et al.A multi-scattering and multi-layer snow model and its validation[C]//Proceeding of IEEE International Geoscience and Remote Sensing Symposium,2007:1219-1222.doi:10.1109/IGARSS.2007.4423025.
[32] Du J,Shi J.Development of a parameterized snow scattering model[C]//Proceeding of IEEE International Geoscience and Remote Sensing Symposium,2008:43-46.doi:10.1109/IGARSS.2008.4779278.
[33] Du J Y,Shi J C,Rott H.Comparison between a multi-scattering and multi-layer snow scattering model and its parameterized snow backscattering model[J].Remote Sensing of Environment,2010,114(5):1089-1098.
[34] Choudhury B J,Schmugge T J,Chang A,et al.Effect of surface roughness on the microwave emission from soil[J].Journal of Geophysical Research,1979,84(9):5699-5706.
[35] Prigent C,Jaumouillü E,Chevallier F,et al.A parameterization of the microwave land surface emissivity between 19 and 100 GHz,anchored to satellite-derived estimates[J].IEEE Transactions on Geoscience and Remote Sensing,2008,46(2):344-352.
[36] Pan H,Shi J,Yang H,et al.Passive microwave radiance estimation by coupling a land surface emissivity model with CRTM[C]//Proceeding of IEEE International Geoscience and Remote Sensing Symposium,2012:2423-2425.doi:10.1109/IGARSS.2012.6351002.
[37] Zhang S,Shi J,Dou Y,et al.Experiments of satellite data simulation based on the community land model and SCE-UA algorithm[C]//Proceeding of IEEE International Geoscience and Remote Sensing Symposium,2011:28-31.doi:10.1109/IGARSS.2011.6048889.
[38] Zhang S,Shi J,Jiang L,et al.A dual-phase satellite data simulation system:Framework and preliminary evaluation over China[C]//Proceeding of IEEE International Geoscience and Remote Sensing Symposium,2012:1014 -1017.doi:10.1109/IGARSS.2012.6351230.
[39] Wigneron J P,Kerr Y,Waldteufel P,et al.L-band microwave emission of the biosphere(L-MEB) model:Description and calibration against experimental data sets over crop fields[J].Remote Sensing of Environment,2007,107(4):639-655.
[40] Pulliainen J,Krna J P,Hallikainen M.Development of geophysical retrieval algorithms for the MIMR[J].IEEE Transactions on Geoscience and Remote Sensing,1993,31(1):268-277.
[41] Pulliainen J,Hallikainen M.Retrieval of regional snow water equivalent from space-borne passive microwave observations[J].Remote Sensing of Environment,2001,75(1):76-85.
[42] Kerr Y H,Njoku E G.A semiempirical model for interpreting microwave emission from semiarid land surfaces as seen from space[J].IEEE Transactions on Geoscience and Remote Sensing,1990,28(3):384-393.
[43] Hewison T J.Airborne measurements of forest and agricultural land surface emissivity at millimeter wavelengths[J].IEEE Transactions on Geoscience and Remote Sensing,2001,39(2):393-400.
[44] Wegmôller U,Matzler C.Rough bare soil reflectivity model[J].IEEE Transactions on Geoscience and Remote Sensing,1999,37(3):1391-1395.
[45] Wigneron J P,Laguerre L,Kerr Y H.A simple parameterization of the L-band microwave emission from rough agricultural soils[J].IEEE Transactions on Geoscience and Remote Sensing,2001,39(8):1697-1707.
[46] Mo T,Schmugge T J.A parameterization of the effect of surface roughness on microwave emission[J].IEEE Transactions on Geoscience and Remote Sensing,1987,25(4):47-54.
[47] Pulliainen J,Grandell J,Hallikainen M T.HUT snow emission model and its applicability to snow water equivalent retrieval[J].IEEE Transactions on Geoscience and Remote Sensing,1999,37(3):1378-1390.
[48] Wiesmann A,Mtzler C.Microwave emission model of layered snowpacks[J].Remote Sensing of Environment,1999,70(3):307-316.
[49] Roy V,Goïta K,Royer A,et al.Snow water equivalent retrieval in a Canadian Boreal environment from microwave measurements using the HUT snow emission model[J].IEEE Transactions on Geoscience and Remote Sensing,2004,42(9):1850-1859.
[50] Pulliainen J.Mapping of snow water equivalent and snow depth in Boreal and sub-arctic zones by assimilating space-borne microwave radiometer data and ground-based observations[J].Remote Sensing of Environment,2006,101(2):257-269.
[51] Pardü M,Goïta K,Royer A.Inversion of a passive microwave snow emission model for water equivalent estimation using airborne and satellite data[J].Remote Sensing of Environment,2007,111(2/3):346-356.
[52] 赵天杰,张立新,蒋玲梅,等.复杂地表条件下冻融土的微波辐射特性模拟及判别分析[J].冰川冻土,2009,31(2):220-226. Zhao T Z,Zhang L X,Jiang L M,et al.Microwave radiation of frozen and thawed soils under complicated surface condition:Simulation and discrimination analysis[J].Journal of Glaciology and Geocryology,2009,31(2):220-226.
[53] Lemmetyinen J,Pulliainen J,Rees A,et al.Multiple-layer adaptation of HUT snow emission model:Comparison with experimental data[J].IEEE Transactions on Geoscience and Remote Sensing,2010,48(7):2781-2794.
[54] Gunn G,Duguay C,Derksen C,et al.Evaluation of the HUT modified snow emission model over lake ice using airborne passive microwave measurements[J].Remote Sensing of Environment,2011,115(1):233-244.
[55] Mätzler C.Improved born approximation for scatteing of radiation in a granular medium[J].Journal of Applied Physics,1998,83(11):6111-6117.
[56] Mätzler C,Wiesmann A.Extension of the microwave emission model of layered snowpacks to coarse-grained snow[J].Remote Sensing of Environment,1999,70(3):317-325.
[57] Graf T,Koike T,Li X,et al.Assimilating passive microwave brightness temperature data into a land surface model to improve the snow depth predictability[C]//Proceeding of IEEE International Geoscience and Remote Sensing Symposium,2006:706-709.doi:10.1109/IGARSS.2006.185
[58] Harlow R C,Essery R.Tundra snow emissivities at MHS frequencies:MEMLS validation using airborne microwave data Measured during CLPX-II[J].IEEE Transactions on Geoscience and Remote Sensing,2012,50(11):4262-4278.
[59] Kang D H,Barros A P.Observing system simulation of snow microwave emissions over data sparse regions,part I:Single layer physics[J].IEEE Transactions on Geoscience and Remote Sensing,2012,50(5):1785-1805.
[60] 吴莹,Weng F Z,王振会,等.沙漠地区微波地表发射率和土壤质地关系分析[J].高原气象,2013,32(2):481-490. Wu Y,Weng F Z,Wang Z H,et al.Analysis of the relationship between microwave land surface emissivity and soil texture over deserts[J].Plateau Meteorology,2013,32(2):481-490.
[1] 孟蕾, 林超. 机载LiDAR技术生成DEM的质量检查与解决方案探讨[J]. 国土资源遥感, 2020, 32(1): 7-12.
[2] 朱军桃, 王雷, 赵传, 郑旭东. 基于区域生长算法的复杂建筑物屋顶点云分割[J]. 国土资源遥感, 2019, 31(4): 20-25.
[3] 刘玉锋, 潘英, 李虎. 基于高空间分辨率遥感数据的天山云杉树冠信息提取研究[J]. 国土资源遥感, 2019, 31(4): 112-119.
[4] 闫利, 李瑶, 谢洪. 基于机载与车载LiDAR数据的LoD3城市建筑物模型自动重建[J]. 国土资源遥感, 2018, 30(4): 97-101.
[5] 李云帆, 谭德宝, 刘瑞, 邬建伟. 顾及建筑物屋顶结构的改进RANSAC点云分割算法[J]. 国土资源遥感, 2017, 29(4): 20-25.
[6] 于海洋, 罗玲, 马慧慧, 李辉. SRTM(1″)DEM在流域水文分析中的适用性研究[J]. 国土资源遥感, 2017, 29(2): 138-143.
[7] 李佳俊, 钟若飞. 轻小型机载LiDAR的航线设计[J]. 国土资源遥感, 2017, 29(2): 97-103.
[8] 王春林, 孙金彦, 周绍光, 钱海明, 黄祚继. 影像辅助下LiDAR数据建筑物轮廓信息提取[J]. 国土资源遥感, 2017, 29(1): 78-85.
[9] 査达剑, 李乐林, 江万寿, 韩用顺. LiDAR三维重建中基于CSG方法的扩展研究[J]. 国土资源遥感, 2016, 28(4): 35-42.
[10] 王雪, 李培军, 姜莎莎, 刘婧, 宋本钦. 利用机载LiDAR数据和高分辨率图像提取复杂城区建筑物[J]. 国土资源遥感, 2016, 28(2): 106-111.
[11] 董保根, 车森, 解龙根, 单国慧, 何乔. Mode滤波器及其在遥感分类后处理中的应用[J]. 国土资源遥感, 2016, 28(2): 62-66.
[12] 唐菲菲, 阮志敏, 张亚利, 彭丽. 基于机载LiDAR和GIS数据的建筑物变化信息自动检测方法[J]. 国土资源遥感, 2016, 28(1): 57-62.
[13] 蔡红玥, 姚国清. 高分辨率遥感图像道路交叉口自动提取[J]. 国土资源遥感, 2016, 28(1): 63-71.
[14] 肖春蕾, 郭兆成, 郑雄伟, 刘圣伟, 尚博譞. 机载LiDAR技术在地质调查领域中的几个典型应用[J]. 国土资源遥感, 2016, 28(1): 136-143.
[15] 陈洁, 肖春蕾, 李京. 无检校场的机载LiDAR点云数据检校方法[J]. 国土资源遥感, 2015, 27(4): 27-33.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发