Please wait a minute...
 
国土资源遥感  2014, Vol. 26 Issue (1): 144-151    DOI: 10.6046/gtzyyg.2014.01.25
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
近30年西藏雪深时空变化及其对气候变化的响应
白淑英1,2, 史建桥1,3, 沈渭寿2, 高吉喜2, 王冠军3
1. 南京信息工程大学遥感学院, 南京 210044;
2. 环境保护部南京环境科学研究所,南京 210042;
3. 94783部队61分队,长兴 313111
Spatial-temporal variation of snow depth in Tibet and its response to climatic change in the past 30 years
BAI Shuying1,2, SHI Jianqiao1,3, SHEN Weishou2, GAO Jixi2, WANG Guanjun3
1. College of Remote Sensing, Nanjing University of Information Science and Technology, Nanjing 210044, China;
2. Environmental Protection Department of Nanjing Institute of Environmental Science, Nanjing 210042, China;
3. Unit 61, No.94783 of PLA, Changxing 313111, China
全文: PDF(1101 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

积雪深度是表征积雪特征的重要参数,也是气候变化区域响应敏感因素。利用1979—2010年逐日雪深被动微波遥感数据以及同期气象资料,对西藏雪深时空变化特征及其与气候因子的响应关系进行了分析。结果表明:32 a来,西藏雪深呈显著增加趋势,气候倾向率为0.26 cm/10 a;1999年以后,雪深则表现为下降趋势,气候倾向率为-0.35 cm/10 a。四季平均雪深中,春季雪深的变化对年平均贡献最大,二者相关系数高达0.88。高原雪深异常偏多年份主要在20世纪90年代,但并未发生气候突变。周期分析表明,西藏雪深存在准6~7 a振荡的显著周期。西藏雪深呈四周山地雪深大,中部腹地雪深小的空间格局,且受海拔影响有明显的陡坎效应,绝大部分地区雪深变化趋势倾向率在-0.08~0.08 cm/a,百分比达到74.6%;逐像元回归分析表明,雪深呈增加趋势的像元数占全区像元总数的76.9%,有减少趋势的仅占23.1%。西藏雪深与气温、降水、风速和日照时数存在明显的统计和空间相关性,整体表现为雪深与气温、风速、日照时数呈负相关,而与降水呈正相关。多元回归分析表明,春秋季雪深模拟值与实测值的相关系数均达0.6以上,通过了0.01的显著性检验;夏冬季雪深回归模型的复相关系数只有0.4~0.5,且未通过0.05显著性检验。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭毅
丁海勇
徐晶鑫
徐灏
关键词 地沟油高光谱最短距离法聚类分析    
Abstract

Snow depth is an important parameter to characterize snow features, and is also one of the sensitive factors of regional response to climate change. Based on snow depth daily data and monthly temperature, precipitation, wind and sunshine hours data from meteorological stations during 1979 to 2010, the authors analyzed the spatial and temporal variation of snow depth in Tibetan Plateau and its response to climatic change by using methods of anomaly analysis, mutation analysis, spatial analysis and power spectral analysis. The results showed that, in the period from 1979 to 2010, the snow depth increased obviously and significantly with linear trend rate 0.26 cm/10a, but there was a pronounced decrease phase from 1999 to 2010, thus forming the situation that the snow depth increased first and then decreased in general in Tibetan Plateau. In the four seasons, winter mean snow depth contributed most significantly to the annual situation, with the correlation coefficient between them up to 0.88. The snow depth was extremely excessive in the 1990s but with no climate mutation. An analysis of power spectrum showed that the snow depth had quasi-periodic oscillation of 6-7 years. The results indicated that there were significant spatial differences in the snow depth of Tibetan Plateau. In the peripheral high mountains, snow depth was distributed extensively and had a long duration, but in the vast interior it was rare or even thin. The snow depth was significantly affected by the altitude with a steep step effect.And most of linear trend rates of snow depth in Tibetan Plateau were between -0.08 and 0.08 cm/a, with the percentage reaching 74.6%. The results of regression analysis indicated that the increased area of snow depth accounted for 76.9%, while the decreased area accounted for 23.1%. There was obvious statistical and spatial correlation between snow depth and temperature, precipitation, wind speed and sunshine duration in general; there was negative correlation between snow depth and temperature, wind speed and sunshine duration, but positive correlation between snow depth and precipitation. The results of multiple regression analysis showed that, in spring and autumn, the correlation coefficients between simulated snow depth and observation data were both above 0.6 and passed 0.01 significance test, while they were only between 0.4 and 0.5 in summer and winter and didn't pass the 0.05 significance test.

Key wordswaste oil    hyperspectral    shortest distance method    clustering analysis
收稿日期: 2013-03-15      出版日期: 2014-01-08
:  TP79  
基金资助:

国家环保公益性科研专项(编号:201209032)资助。

作者简介: 白淑英(1973-),女,博士,副教授,主要研究方向为遥感与GIS在资源环境中的应用。Email:baishu-ying@163.com。
引用本文:   
白淑英, 史建桥, 沈渭寿, 高吉喜, 王冠军. 近30年西藏雪深时空变化及其对气候变化的响应[J]. 国土资源遥感, 2014, 26(1): 144-151.
BAI Shuying, SHI Jianqiao, SHEN Weishou, GAO Jixi, WANG Guanjun. Spatial-temporal variation of snow depth in Tibet and its response to climatic change in the past 30 years. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(1): 144-151.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2014.01.25      或      https://www.gtzyyg.com/CN/Y2014/V26/I1/144

[1] 李栋梁, 王春学.积雪分布及其对中国气候影响的研究进展[J].大气科学学报, 2011, 34(5):627-636. Li D L, Wang C X.Research progress of snow cover and its influence on China climate[J].Transactions of Atmospheric Sciences, 2011, 34(5):627-636.

[2] Liu X D, Chen B D.Climatic warming in the Tibetan Plateau during recent decades[J].International Journal of Climatology, 2000, 20(14):1729-1742.

[3] 孙鸿烈.青藏高原的形成演化[M].上海:科学技术出版社, 1996. Sun H L.Formation and evolution of Qinghai-Xizang Plateau[M].Shanghai:Science and Technology Press, 1996.

[4] 李小兰, 张飞民, 王澄海.中国地区地面观测积雪深度和遥感雪深资料的对比分析[J].冰川冻土, 2012, 34(4):755-764. Li X L, Zhang F M, Wang D H.Comparison and analysis of snow depth over China, observed and derived from remote sensing[J].Journal of Glaciology and Geocryology, 2012, 34(4):755-764.

[5] 李培基.中国季节积雪资源及其波动[J].科学通报, 1987, 32(17):1329-1332. Li P J.Resources and their fluctuations of seasonal snow in China[J].Chinese Science Bulletin, 1987, 32(17):1329-1332.

[6] 蔡迪花, 郭铌, 王兴, 等.基于MODIS的祁连山区积雪时空变化特征[J].冰川冻土, 2009, 31(6):1028-1036. Cai D H, Guo N, Wang X, et al.The spatial and temporal variations of snow cover over the Qilian Mountains based on MODIS data[J].Journal of Glaciology and Geocryology, 2009, 31(6):1028-1036.

[7] 纪鹏, 郭华东, 张露.近20年西昆仑地区冰川动态变化遥感研究[J].国土资源遥感, 2013, 25(1):93-98. Ji P, Guo H D, Zhang L.Remote sensing study of glacier dynamic change in West Kunlun Mountains in the past 20 years[J].Remote Sensing for Land and Resources, 2013, 25(1):93-98.

[8] 车涛, 李新, 高峰.青藏高原积雪深度和雪水当量的被动微波遥感反演[J].冰川冻土, 2004, 26(3):363-368. Che T, Li X, Gao F.Estimation of snow water equivalent in the Tibetan Plateau using passive microwave remote sensing data(SSM/I)[J].Journal of Glaciology and Geocryology, 2004, 26(3):363-368.

[9] 张佳华, 吴杨, 姚凤梅.卫星遥感藏北积雪分布及影响因子分析[J].地球物理学报, 2008, 51(4):1013-1021. Zhang J H, Wu Y, Yao F M.Study on the snow distribution and influencing factors in Northern Tibet based on remote sensing information[J].Chinese Journal of Geophysics, 2008, 51(4):1013-1021.

[10] 边多, 董妍, 边巴次仁, 等.基于MODIS资料的西藏遥感积雪监测业务化方法[J].气象科技, 2008, 36(3):345-348. Bian D, Dong Y, Bianba C R, et al.Practical method for monitoring snow in Tibet Plateau based on MODIS data[J].Meteorological Science and Technology, 2008, 36(3):345-348.

[11] 刘艳, 李杨, 张璞.基于实测光谱和SRF的稀疏植被区MODIS积雪信息提取[J].国土资源遥感, 2013, 25(1):26-32. Liu Y, Li Y, Zhang P.Extraction of snow cover information in sparse vegetation area based on spectral measurement and SRF by using MODIS data[J].Remote Sensing for Land and Resources, 2013, 25(1):26-32.

[12] 魏锋华, 李才兴, 扎西央宗.基于中巴资源卫星数据的积雪监测研究[J].国土资源遥感, 2007, 19(3):31-35. Wei F H, Li C X, Zaxi Y Z.Snow monitoring based on CBERS data[J].Remote Sensing for Land and Resources, 2007, 19(3):31-35.

[13] Che T, Li X, Jin R, et al.Snow depth derived from passive microwave remote-sensing data in China[J].Annual of Glaciology, 2008, 49(1):145-154.

[14] 杜军, 边多, 胡军, 等.西藏高原近35年日照时数的变化特征及其影响因素[J].地理学报, 2007, 62(5):492-500. Du J, Bian D, Hu J, et al.Climatic change of sunshine duration and its influencing factors over Tibet during the last 35 years[J].Acta Geographica Sinica, 2007, 62(5):492-500.

[15] 唐小萍, 闫小利, 尼玛吉, 等.西藏高原近40年积雪日数变化特征分析[J].地理学报, 2012, 67(7):951-959. Tang X P, Yan X L, Ni M J, et al.Changes of the snow cover days on Tibet Plateau in last 40 years[J].Acta Geographica Sinica, 2012, 67(7):951-959.

[16] Schulz M, Mudelsee M.Redfit:Estimatingred-noise spectra directly from unevenly spaced paleoclimatic time series[J].Computers and Geosciences, 2002, 28(3), 421-426.

[17] 韦志刚, 黄荣辉, 陈文.青藏高原冬春积雪年际振荡成因分析[J].冰川冻土, 2005, 27(4):491-497. Wei Z G, Huang R H, Chen W.The causes of the interannual variation of snow cover over the Tibetan Plateau[J].Journal of Glaciology and Geocryology, 2005, 27(4):491-497.

[18] 韦志刚, 黄荣辉, 陈文, 等.青藏高原地面站积雪的空间分布和年代际变化特征[J].大气科学, 2002, 26(4):496-508. Wei Z G, Huang R H, Chen W, et al.Spatial distributions and interdecadal variations of the snow at the Tibetan Plateau weather stations[J].Chinese Journal of Atmosphere Sciences, 2002, 26(4):496-508.

[19] 王叶堂, 何勇, 侯书贵.2000—2005年青藏高原积雪时空变化分析[J].冰川冻土, 2007, 29(6):855-861. Wang Y T, He Y, Hou S G.Analysis of the temporal and spatial variations of snow cover over the Tibetan Plateau based on MODIS[J].Journal of Glaciology and Geocryology, 2007, 29(6):855-861.

[1] 王茜, 任广利. 高光谱遥感异常信息在阿尔金索拉克地区铜金矿找矿工作中的应用[J]. 自然资源遥感, 2022, 34(1): 277-285.
[2] 曲海成, 王雅萱, 申磊. 多感受野特征与空谱注意力结合的高光谱图像超分辨率算法[J]. 自然资源遥感, 2022, 34(1): 43-52.
[3] 陈洁, 张立福, 张琳珊, 张红明, 童庆禧. 紫外-可见光水质参数在线监测技术研究进展[J]. 自然资源遥感, 2021, 33(4): 1-9.
[4] 高文龙, 张圣微, 林汐, 雒萌, 任照怡. 煤矿开采中SOM的遥感估算和时空动态分析[J]. 自然资源遥感, 2021, 33(4): 235-242.
[5] 刘咏梅, 范鸿建, 盖星华, 刘建红, 王雷. 基于无人机高光谱影像的NDVI估算植被盖度精度分析[J]. 自然资源遥感, 2021, 33(3): 11-17.
[6] 李双权, 马玉凤, 刘勋, 李长春, 杜军. 郑州邙山枣树沟黄土剖面常量元素含量的高光谱反演[J]. 自然资源遥感, 2021, 33(3): 121-129.
[7] 杜程, 李得林, 李根军, 杨雪松. 基于高原盐湖光谱特性下的溶解氧反演应用与探讨[J]. 自然资源遥感, 2021, 33(3): 246-252.
[8] 姜亚楠, 张欣, 张春雷, 仲诚诚, 赵俊芳. 基于多尺度LBP特征融合的遥感图像分类[J]. 自然资源遥感, 2021, 33(3): 36-44.
[9] 臧传凯, 沈芳, 杨正东. 基于无人机高光谱遥感的河湖水环境探测[J]. 自然资源遥感, 2021, 33(3): 45-53.
[10] 王华, 李卫卫, 李志刚, 陈学业, 孙乐. 基于多尺度超像素的高光谱图像分类研究[J]. 自然资源遥感, 2021, 33(3): 63-71.
[11] 舒慧勤, 方俊永, 鲁鹏, 顾万发, 王潇, 张晓红, 刘学, 丁兰坡. 基于多源高分辨率数据的遗址空间考古精细识别研究[J]. 国土资源遥感, 2021, 33(2): 162-171.
[12] 肖艳, 辛洪波, 王斌, 崔利, 姜琦刚. 基于小波变换和连续投影算法的黑土有机质含量高光谱估测[J]. 国土资源遥感, 2021, 33(2): 33-39.
[13] 胡新宇, 许章华, 陈文慧, 陈秋霞, 王琳, 刘辉, 刘智才. 基于PROBA/CHRIS影像的归一化阴影植被指数NSVI构建与应用效果[J]. 国土资源遥感, 2021, 33(2): 55-65.
[14] 韩彦岭, 崔鹏霞, 杨树瑚, 刘业锟, 王静, 张云. 基于残差网络特征融合的高光谱图像分类[J]. 国土资源遥感, 2021, 33(2): 11-19.
[15] 吴倩, 姜琦刚, 史鹏飞, 张莉莉. 基于高光谱的土壤碳酸钙含量估算模型研究[J]. 国土资源遥感, 2021, 33(1): 138-144.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发