Please wait a minute...
 
国土资源遥感  2021, Vol. 33 Issue (2): 162-171    DOI: 10.6046/gtzyyg.2020293
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
基于多源高分辨率数据的遗址空间考古精细识别研究
舒慧勤1,2(), 方俊永1(), 鲁鹏3, 顾万发4, 王潇1, 张晓红1, 刘学1, 丁兰坡4
1.中国科学院空天信息创新研究院,北京 100094
2.中国科学院大学,北京 100049
3.河南省科学院地理研究所,郑州 450052
4.郑州市文物考古研究院,郑州 450000
Research on fine recognition of site spatial archaeology based on multisource high-resolution data
SHU Huiqin1,2(), FANG Junyong1(), LU Peng3, GU Wanfa4, WANG Xiao1, ZHANG Xiaohong1, LIU Xue1, DING Lanpo4
1. Areospace Information Research Institute, China Academy of Sciences, Beijing 100094, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. Institute of Geographical Sciences, Henan Academy of Sciences, Zhengzhou 450052, China
4. Zhengzhou Institute of Cultural Relics and Archaeology,Zhengzhou 450000, China
全文: PDF(8369 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

河南省郑州市的平陶城是东周重要城邑,具有重要的历史价值。由于传统考古调查具有耗时长、投入大、工作量大等问题,平陶故城的聚落布局、遗迹分布等仍不清晰。研究选取Corona和Google Earth历史影像、无人机热红外和高光谱影像,对比分析不同载荷、不同时相、不同尺度影像上的色调和纹理特征,提取平陶城城址的考古异常区域,发现了疑似城墙、城门、角台、长方形房基等遗迹,并根据识别结果初步重建遗址空间结构。研究结果表明,Corona影像有助于识别遗址早期面貌,Google Earth历史影像可以在微小的疑似遗迹特征检测和提取方面提供帮助,航空热红外影像可以揭示在地面或光学影像上不明显的埋藏的考古特征,航空高光谱影像经过最小噪声分离变换有助于探测微弱信息。研究证明综合利用多源高分辨率数据可对遗址遗迹分布、空间结构进行调查、预测和重建,为进一步考古研究和遗址保护提供参考。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
舒慧勤
方俊永
鲁鹏
顾万发
王潇
张晓红
刘学
丁兰坡
关键词 遥感考古遗址识别无人机热红外高光谱CoronaGoogle Earth    
Abstract

The ancient city of Pingtao, Zhengzhou City, Henan Province, was an important city in the Eastern Zhou Dynasty and has important historical value. Due to the problems of time-consuming, heavy investment and heavy workload in traditional archaeological investigations, the settlement layout and relic distribution of the old city of Pingtao are still unclear. In this study, the authors selected Corona, Google Earth historical images and aerial thermal infrared images, comparatively analyzed the tonal and texture features on images of different loads, phases and scales, and extracted the archaeological anomalous areas of the Pingtao City site and Dianjuntai site. Suspected ruins such as city walls, gates, corner platforms and rectangular building foundations were discovered, and the spatial structure of the ruins was initially reconstructed based on the identification results. The results of the study show that Corona imagery helps to identify the early appearance of the site, Google Earth historical imagery provides assistance for the detection and extraction of tiny suspected relic features, and aerial thermal infrared imagery can reveal such archeological features as indistinct burial on the ground or optical image. The research proves that the comprehensive utilization of multi-source high-score data can investigate, predict and reconstruct the distribution and spatial structure of the relics, thus providing a reference for further archaeological research and site protection.

Key wordsremote sensing archaeology    site identification    aviation thermal infrared    hyperspectral    Corona    Google Earth
收稿日期: 2020-09-16      出版日期: 2021-07-21
ZTFLH:  TP79  
基金资助:国家十三五重点研发计划“重大自然灾害监测预警与防范-天地联合田野考古调查关键技术”(2020YFC1521900);国家自然科学基金项目“郑州地区新石器-青铜时代环壕沉积模式研究”(41971016);国家自然科学基金项目“河南贾鲁河上游地区全新世早中期环境与聚落形态演变关系研究”(41671014);国家社会科学基金项目“2013—2018年度河南巩义双槐树遗址考古资料整理与综合研究”(19ZDA227);郑州环境考古研究项目“河南省数字环境考古特聘研究员项目”(200501002)
通讯作者: 方俊永
作者简介: 舒慧勤(1993-),女,硕士研究生,主要从事低空遥感应用及遥感考古研究。Email: shuhq521@gmail.com
引用本文:   
舒慧勤, 方俊永, 鲁鹏, 顾万发, 王潇, 张晓红, 刘学, 丁兰坡. 基于多源高分辨率数据的遗址空间考古精细识别研究[J]. 国土资源遥感, 2021, 33(2): 162-171.
SHU Huiqin, FANG Junyong, LU Peng, GU Wanfa, WANG Xiao, ZHANG Xiaohong, LIU Xue, DING Lanpo. Research on fine recognition of site spatial archaeology based on multisource high-resolution data. Remote Sensing for Land & Resources, 2021, 33(2): 162-171.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2020293      或      https://www.gtzyyg.com/CN/Y2021/V33/I2/162
Fig.1  研究区地理位置示意图
成像时间 数据源 空间分
辨率/m
波段
数据来源 备注
1962-04-18 Corona KH-4 3.04 1 美国地质调查局 立体像对
1963-09-25 Corona KH-4A 2.74 1 美国地质调查局
1966-06-06 Corona KH-7 0.61 1 美国地质调查局
1968-08-17 Corona KH-4B 1.82 1 美国地质调查局 立体像对
1968-11-16 Corona KH-4B 1.82 1 美国地质调查局 立体像对
2003-06-12 QuickBird02 0.64 3 Google Earth历史影像
2011-05-27 WorldView-2 0.5 3 Google Earth历史影像
2014-05-29 GF-1 0.46 3 Google Earth历史影像
2015-01-03 WorldView-2 0.55 3 Google Earth历史影像
2015-04-13 WorldView-3 0.38 3 Google Earth历史影像
2016-12-08 WorldView-2 0.52 3 Google Earth历史影像
2017-11-20 WorldView-2 0.5 3 Google Earth历史影像
2019-03-23 GF-1 0.48 3 Google Earth历史影像
2019-12-19 Pleiades 0.5 3 Google Earth历史影像
Tab.1  多源高分辨率遥感影像信息
参数 数值
翼展/mm 2 500
轴距/mm 1 000
最大起飞质量/kg 5
最大任务载重/kg 3
空载悬停时间/min 40
最大爬升速度/(m·s-1) 4
最大下降速度/(m·s-1) 3
地面站控制距离/m 10 000
工作最大海拔/m 5 000
Tab.2  无人机主要参数
Fig.2  无人机遥感系统
Fig.3  古道路遗迹遥感解译标志
Fig.4  平陶城城墙和疑似角台遗迹遥感影像分析
Fig.5  平陶城城址疑似城门大致位置
Fig.6  平陶城城址长方形遗迹影像分析
Fig.7  高光谱影像古道路遗迹识别
[1] 邓飚, 郭华东. 遥感考古研究综述[J]. 遥感信息, 2010(1):110-116.
Deng B, Guo H D. Review of remote sensing archaeological research[J]. Remote Sensing Information, 2010(1):110-116.
[2] Noviello M, Ciminale M,de Pasquale V.Combined application of pansharpening and enhancement metho-ds to improve archaeological cropmark visibility and identification in QuickBird imagery:Two case studies from Apulia,Southern Italy[J]. Journal of Archaeological Science, 2013, 40(10):3604-3613.
doi: 10.1016/j.jas.2013.04.013
[3] Masini N, Lasaponara R, Orefici G. Addressing the challenge of detecting archaeological adobe structures in Southern Peru using QuickBird imagery[J]. Journal of Cultural Heritage, 2009, 10(s1):3-9.
[4] Masini N, Lasaponara R. Investigating the spectral capability of QuickBird data to detect archaeological remains buried under vegetated and not vegetated areas[J]. Journal of Cultural Heritage, 2007, 8(1):53-60.
doi: 10.1016/j.culher.2006.06.006
[5] Masini N, Rosa L. Satellite-based recognition of landscape archaeological features related to ancient hum-an transformation[J]. Journal of Geophysics and Engineering, 2006, 3(3):230-235.
doi: 10.1088/1742-2132/3/3/004
[6] Garrison T G, Houston S D, Golden C, et al. Evaluating the use of IKONOS satellite imagery in lowland Maya settlement archaeology[J]. Journal of Archaeological Science, 2008, 35(10):2770-2777.
doi: 10.1016/j.jas.2008.05.003
[7] Traviglia A, Cottica D. Remote sensing applications and archaeological research in the Northern Lagoon of Venice:The case of the lost settlement of Constanciacus[J]. Journal of Archaeological Science, 2011, 38(9):2040-2050.
doi: 10.1016/j.jas.2010.10.024
[8] Luo L, Wang X Y, Guo H D, et al. Airborne and spaceborne remote sensing for archaeological and cult-ural heritage applications:A review of the century (1907—2017)[J]. Remote Sensing of Environment, 2019(232):508-542.
[9] Agapiou A, Alexakis D D, Sarris A, et al. Colour to greyscale pixels:Re-seeing greyscale archived aerial photographs and declassified satellite CORONA images based on image fusion techniques[J]. Archaeol-ogical Prospection, 2016, 23(4):231-241.
[10] Philip G, Donoghue D, Beck A, et al. CORONA satellite photography:An archaeological application from the Middle East[J]. Antiquity, 2002, 76(291):109-118.
doi: 10.1017/S0003598X00089869
[11] Shaw J. A 'reflexive' multi-stage survey methodology for historical landscape research in Central India:Fieldwalking,local knowledge,and satellite imagery as archaeological site prospection and mapping tools in the Sanchi Survey Project[J]. Current Science, 2017, 113(10):1918-1933
doi: 10.18520/cs/v113/i10/1918-1933
[12] 于丽君, 聂跃平, 杨林, 等. 新疆轮台奎玉克协海尔古城空间考古综合研究[J]. 遥感技术与应用, 2020, 35(1):255-266.
Yu L J, Nie Y P, Yang L, et al. A comprehensive spatial archaeological study of the Koyuk Shahri ancient City in Xinjiang[J]. Remote Sensing Technology and Application, 2020, 35(1):255-266.
[13] Jason U. CORONA satellite photography and ancient road networks:A northern mesopotamian case study[J]. Antiquity, 2003, 77(295):102-115.
doi: 10.1017/S0003598X00061391
[14] Francesc C, Marco M, Nikolaos G, et al. CORONA photographs in monsoonal semi-arid environments:Addressing archaeological surveys and historic landscape dynamics over North Gujarat,India[J]. Archaeological Prospection, 2015, 22(2):75-90.
doi: 10.1002/arp.v22.2
[15] Sabine R, Andrey B, Dmitriy K. Caucasia top-down:Remote sensing data for survey in a high altitude mountain landscape[J]. Quaternary International, 2016, 402(402):46-60.
doi: 10.1016/j.quaint.2015.10.106
[16] Goossens R, Wulf A D, Bourgeois J, et al. Satellite imagery and archaeology:The example of CORONA in the Altai Mountains[J]. Journal of Archaeological Science, 2006, 33(6):745-755
doi: 10.1016/j.jas.2005.10.010
[17] Karim S, Xavier R.Google Earth, GIS and stone-walled structures in southern Gauteng,South Africa[J]. Journal of Archaeological Science, 2012, 39(4):1034-1042.
doi: 10.1016/j.jas.2011.11.024
[18] Heather P. Google Earth shows clandestine worlds[J]. Science, 2010, 329(5995):1008-1009.
doi: 10.1126/science.329.5995.1008 pmid: 20798294
[19] Luo L, Wang X Y, Liu C S, et al. Integrated RS,GIS and GPS approaches to archaeological prospecting in the Hexi Corridor,NW China:A case study of the royal road to ancient Dunhuang[J]. Journal of Archaeological Science, 2014(50):178-190.
[20] Carrie H. A malarial-ridden swamp:Using Google Earth Pro and Corona to access the southern Balikh valley,Syria[J]. Journal of Archaeological Science, 2013, 40(4):1975-1987.
doi: 10.1016/j.jas.2012.11.017
[21] Kaimaris D, Georgoula O, Patias P, et al. Comparative analysis on the archaeological content of imagery from Google Earth[J]. Journal of Cultural Heritage, 2011, 12(3):263-269.
doi: 10.1016/j.culher.2010.12.007
[22] Kennedy D, Bishop M C. Google earth and the archaeology of Saudi Arabia:A case study from the Jeddah area[J]. Journal of Archaeological Science, 2011, 38(6):1284-1293.
doi: 10.1016/j.jas.2011.01.003
[23] Dimitris K, Petros P, Olga G. Google Earth revisited: Case studies at the Plain of Larissa (Thessaly,Greece)[J]. International Journal of Computational Methods in Heritage Science (IJCMHS), 2017, 1(1):77-88.
[24] Kaimaris D, Georgoula O, Patias P, et al. Comparative analysis on the archaeological content of imagery from Google Earth[J]. Journal of Cultural Heritage, 2011, 12(3):263-269.
doi: 10.1016/j.culher.2010.12.007
[25] Périsset M C, Tabbagh A. Interpretation of thermal prospection on bare soils[J]. Archaeometry, 1981, 23(2):169-187.
doi: 10.1111/arch.1981.23.issue-2
[26] Kvamme K L. Archaeological prospecting at the Double Ditch State Historic Site,North Dakota,USA[J]. Archaeological Prospection, 2008, 15(1):62-79.
doi: 10.1002/(ISSN)1099-0763
[27] Casana J, Kantner J, Wiewel A, et al. Archaeological aerial thermography:A case study at the Chaco-era Blue J community,New Mexico[J]. Journal of Archaeological Science, 2014(45):207-219.
[28] Casana J, Wiewel A, Cool A, et al. Archaeological aerial thermography in theory and practice[J]. Advances in Archaeological Practice, 2017, 5(4):1-18.
doi: 10.1017/aap.2016.7
[29] Madeleine M L, Jesse C, Schurr M R, et al. Detecting prehistoric landscape features using thermal,multispectral,and historical imagery analysis at Midewin National Tallgrass Prairie,Illinois[J]. Journal of Archaeological Science:Reports, 2018(21):450-459.
[30] Syed A, William S, Jane D. Finding archaeological cropmarks:A hyperspectral approach[P]. SPIE Remote Sensing, 2007.
[31] Cerra D, Athos A, et al. An Objective Assessment of Hyperspectral Indicators for the Detection of Buried Archaeological Relics[J]. Remote Sensing, 2018, 10(4):500-525.
doi: 10.3390/rs10040500
[32] Athos A, Diofantos G, et al. Observatory validation of Neolithic tells (“Magoules”) in the Thessalian plain,central Greece,using hyperspectral spectroradiometric data[J]. Journal of Archaeological Science, 2012, 39(5):1499-1512.
doi: 10.1016/j.jas.2012.01.001
[33] Stephen H, Thomas E, Ian W. Prospects and problems in the use of hyperspectral imagery for archaeological remote sensing:A case study from the Faynan copper mining district,Jordan[J]. Journal of Archaeolo-gical Science, 2011, 39(2):407-420.
[34] 常维华. 荥阳文物志[M]. 郑州: 中州古籍出版社, 2011:63-64.
Chang W H. ingyang cultural relics[M]. Zhengzhou: Zhongzhou Ancient Books Publishing House, 2011:63-64.
[35] 张立东. 濮阳卫城郭门探寻[J]. 华夏考古, 2019(4):57-63.
Zhang L D. Exploration of the gate of Puyang Guard City[J]. Chinese Archaeology, 2019(4):57-63.
[36] 张立东, 杨子彦. 郑州商城城门探寻[J]. 江汉考古, 2015(4):79-85.
Zhang L D, Yang Z Y. An exploration the gate of Zhengzhou Shang City Site[J]. Huaxia Archaeology, 2015(4):57-63.
[1] 王嘉芃, 徐建国, 沈家晓, 张登荣. 德兴铜矿矿山重金属污染修复效果高光谱遥感评价[J]. 自然资源遥感, 2023, 35(3): 284-291.
[2] 郑宗生, 刘海霞, 王振华, 卢鹏, 沈绪坤, 唐鹏飞. 改进3D-CNN的高光谱图像地物分类方法[J]. 自然资源遥感, 2023, 35(2): 105-111.
[3] 张国建, 刘胜震, 孙英君, 俞凯杰, 刘丽娜. 基于弱监督鲁棒性自编码的高光谱异常检测[J]. 自然资源遥感, 2023, 35(2): 167-175.
[4] 于森, 贾明明, 陈高, 鲁莹莹, 李毅, 张博淳, 路春燕, 李慧颖. 基于LandTrendr算法海南东寨港红树林扰动研究[J]. 自然资源遥感, 2023, 35(2): 42-49.
[5] 朱琳, 黄玉玲, 杨刚, 孙伟伟, 陈超, 黄可. 基于GEE的杭州湾海岸线遥感提取与时空演变分析[J]. 自然资源遥感, 2023, 35(2): 50-60.
[6] 陈慧欣, 陈超, 张自力, 汪李彦, 梁锦涛. 一种基于Google Earth Engine云平台的潮间带遥感信息提取方法[J]. 自然资源遥感, 2022, 34(4): 60-67.
[7] 李毅, 程丽娜, 鲁莹莹, 张博淳, 于森, 贾明明. 基于最大值合成和最大类间方差法莱州湾滨海滩涂变化研究[J]. 自然资源遥感, 2022, 34(4): 68-75.
[8] 孔卓, 杨海涛, 郑逢杰, 李扬, 齐济, 朱沁雨, 杨忠霖. 高光谱遥感图像大气校正研究进展[J]. 自然资源遥感, 2022, 34(4): 1-10.
[9] 张鹏强, 高奎亮, 刘冰, 谭熊. 联合空谱信息的高光谱影像深度Transformer网络分类[J]. 自然资源遥感, 2022, 34(3): 27-32.
[10] 孙肖, 徐林林, 王晓阳, 田野, 王伟, 张中跃. 基于优化K-P-Means解混方法的高光谱图像矿物识别[J]. 自然资源遥感, 2022, 34(3): 43-49.
[11] 晏红波, 韦晚秋, 卢献健, 杨志高, 黎振宝. 基于高光谱特征的土壤含水量遥感反演方法综述[J]. 自然资源遥感, 2022, 34(2): 1-9.
[12] 朱琦, 郭华东, 张露, 梁栋, 刘栩婷, 万祥星. 基于多时相Landsat8影像的海南岛热带天然林类型遥感分类[J]. 自然资源遥感, 2022, 34(2): 215-223.
[13] 孙肖, 彭军还, 赵锋, 王晓阳, 吕洁, 张登峰. 基于空间统计学的高光谱遥感影像主成分选择方法[J]. 自然资源遥感, 2022, 34(2): 37-46.
[14] 王茜, 任广利. 高光谱遥感异常信息在阿尔金索拉克地区铜金矿找矿工作中的应用[J]. 自然资源遥感, 2022, 34(1): 277-285.
[15] 曲海成, 王雅萱, 申磊. 多感受野特征与空谱注意力结合的高光谱图像超分辨率算法[J]. 自然资源遥感, 2022, 34(1): 43-52.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发