Please wait a minute...
 
国土资源遥感  2015, Vol. 27 Issue (2): 69-74    DOI: 10.6046/gtzyyg.2015.02.11
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于机载MASTER数据的果园叶面积指数遥感反演
陈健, 王文君, 盛世杰, 张雪红
南京信息工程大学地理与遥感学院, 南京 210044
Leaf area index retrieval of orchards based on airborne MASTER data
CHEN Jian, WANG Wenjun, SHENG Shijie, ZHANG Xuehong
School of Geography and Remote Sensing, Nanjing University of Information Science and Technology, Nanjing 210044, China
全文: PDF(3861 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

叶面积指数(leaf area index,LAI)是描述植被冠层结构的重要参数,准确获取果树的LAI对果树长势监测和果树估产均有重要作用。以美国加州中部的果园为研究区,基于沿太阳主平面飞行成像的机载MODIS/ASTER模拟传感器(MODIS/ASTER airborne simulator,MASTER)数据,利用实测LAI数据与归一化差值植被指数(normalized difference vegetation index,NDVI)、归一化差值红外指数(normalized difference infrared index,NDII)和归一化差值水体指数(normalized difference water index,NDWI)分别建立回归模型,并选取NDWI进行研究区LAI的反演。结果表明: 由于地物的二向性反射,垂直太阳主平面飞行获取的遥感数据具有明显的亮度梯度现象,而沿太阳主平面飞行获取的遥感数据几乎不受亮度梯度的影响; NDVI在高植被覆盖区容易达到饱和,而NDWI比NDVI和NDII具有更高的拟合度和更小的均方根误差,更加适合研究区LAI的遥感反演; 该研究结果可以丰富LAI反演理论,也可以为研究LAI尺度问题提供理论和数据支持。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高永志
初禹
梁伟
关键词 尾矿库高分辨率图像遥感监测黑龙江省    
Abstract

Leaf area index(LAI)is an important parameter for decrypting canopy structure, and the accurate acquisition of orchards LAI plays an important role in monitoring the growing condition and estimating the yield of orchards. In this paper, the orchard blocks in the middle of California in USA were chosen as the study area, and LAI was retrieved using normalized difference water index (NDWI) through comparing regression models with surveyed leaf area indices and three vegetation indices composed of normalized difference vegetation index (NDVI), normalized difference infrared index (NDII) and NDWI based on the MODIS/ASTER airborne simulator(MASTER)image, which acquired flying along the solar plane. The results show that the image acquired by flying perpendicular to the solar plane has the phenomenon of maximum brightness gradients because of the bidirectional reflectance of surface object, whereas the image acquired by flying along the solar plane fails to show such a phenomenon. The comparison between three vegetation index models also shows that NDVI is easy to reach saturation in higher coverage area, and NDWI is more suitable for LAI retrieval in the study area because NDWI model has higher R2 and smaller RMSE. The results of this study can enrich the LAI retrieval theory and provide theoretical and data support for LAI scale problem.

Key wordstailings pond    high resolution remote sensing images    remote sensing monitoring    Heilongjiang Province
收稿日期: 2014-03-13      出版日期: 2015-03-02
:  TP751.1  
基金资助:

国家自然科学基金项目"遥感数据支持的不同时间尺度气象因子与东亚飞蝗发生关系机理研究"(编号: 40901239)、"红树林冠层高光谱探测及其群落类型识别研究"(编号: 41201461)、江苏省高校优秀中青年骨干教师和校长境外研修计划项目与江苏高校优势学科建设工程项目共同资助。

作者简介: 陈健(1978-),男,博士,副教授,主要从事定量遥感与GIS应用等方面的研究。Email:chjnjnu@163.com。
引用本文:   
陈健, 王文君, 盛世杰, 张雪红. 基于机载MASTER数据的果园叶面积指数遥感反演[J]. 国土资源遥感, 2015, 27(2): 69-74.
CHEN Jian, WANG Wenjun, SHENG Shijie, ZHANG Xuehong. Leaf area index retrieval of orchards based on airborne MASTER data. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(2): 69-74.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2015.02.11      或      https://www.gtzyyg.com/CN/Y2015/V27/I2/69

[1] 刘洋,刘荣高,陈镜明,等.叶面积指数遥感反演研究进展与展望[J].地球信息科学学报,2013,15(3):734-743. Liu Y,Liu R G,Chen J M,et al.Current status and perspectives of leaf area index retrieval from optical remote sensing data[J].Journal of Geo-Information Science,2013,15(3):734-743.

[2] Liu Y,Liu R G,Chen J M.Retrospective retrieval of long-term consistent global leaf area index(1981—2011) from combined AVHRR and MODIS data[J].Journal of Geophysical Research:Biogeosciences(2005-2012),2012:117(G4).doi:10.1029/2012JG002084.

[3] Myneni R B,Hoffman S,Knyazikhin Y,et al.Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data[J].Remote Sensing of Environment,2002,83(1/2):214-231.

[4] Chen J M,Cihlar J.Retrieving leaf area index of boreal conifer forests using Landsat TM images[J].Remote Sensing of Environment,1996,55(2):153-162.

[5] Baret F,Hagolle O,Geiger B,et al.LAI,FAPAR and cover CYCLOPES global products derived from VEGETATION.Part 1:Principles of the algorithm[J].Remote Sensing of Environment,2007,110(3):275-286.

[6] Weiss M,Baret F,Garrigues S,et al.LAI and FAPAR CYCLOPES global products derived from VEGETATION.Part 2:Validation and comparison with MODIS collection 4 products[J].Remote Sensing of Environment,2007,110(3):317-331.

[7] 陈健,倪绍祥,李云梅,等.芦苇地叶面积指数的遥感反演[J].国土资源遥感,2005,17(2):20-23.doi:10.6046/gtzyyg.2005.02.05. Chen J,Ni S X,Li Y M,et al.Remote sensing LAI retrieval of reed marsh[J].Remote Sensing for Land and Resources,2005,17(2):20-23.doi:10.6046/gtzyyg.2005.02.05.

[8] 周宇宇,唐世浩,朱启疆,等.基于新型机载多角度传感器AMTIS的LAI反演[J].国土资源遥感,2003,15(4):9-12.doi:10.6046/gtzyyg.2003.04.03. Zhou Y Y,Tang S H,Zhu Q J,et al.LAI retrieval based on the new airborne multi-angle sensor AMTIS[J].Remote Sensing for Land and Resources,2003,15(4):9-12.doi:10.6046/gtzyyg.2003.04.03.

[9] Simic A,Chen J M,Freemantle J R,et al.Improving clumping and LAI algorithms based on multiangle airborne imagery and ground measurements[J].IEEE Transactions on Geoscience and Remote Sensing,2009,48(4):1742-1759.

[10] Manninen T,Korhonen L,Voipio P,et al.Leaf area index(LAI) estimation of boreal forest using wide optics airborne winter photos[J].Remote Sensing,2009,1(4):1380-1394.

[11] Asmat A,Milton E J,Atkinson P M.Empirical correction of multiple flightline hyperspectral aerial image mosaics[J].Remote Sensing of Environment,2011,115(10):2664-2673.

[12] Kennedy R E,Cohen W B,Takao G.Empirical methods to compensate for a view-angle-dependent brightness gradient in AVIRIS imagery[J].Remote Sensing of Environment,1997,62(3):277-291.

[13] Schiefer S,Hostert P,Damm A.Correcting brightness gradients in hyperspectral data from urban areas[J].Remote Sensing of Environment,2006,101(1):25-37.

[14] Cheng T,Riano D,Koltunov A,et al.Detection of diurnal variation in orchard canopy water content using MODIS/ASTER airborne simulator(MASTER) data[J].Remote Sensing of Environment,2013,132:1-12.

[15] Hook S J,Myers J,Thome K J,et al.The MODIS/ASTER airborne simulator(MASTER):A new instrument for earth science studies[J].Remote Sensing of Environment,2001,76(1):93-102.

[16] 侯学会,牛铮,黄妮,等.小麦生物量和真实叶面积指数的高光谱遥感估算模型[J].国土资源遥感,2012,24(4):30-35.doi:10.6046/gtzyyg.2012.04.06. Hou X H,Niu Z,Huang N,et al.The hyperspectral remote sensing estimation models of total biomass and true LAI of wheat[J].Remote Sensing for Land and Resources,2012,24(4):30-35.doi:10.6046/gtzyyg.2012.04.06.

[17] 傅银贞,汪小钦,江洪.马尾松LAI与植被指数的相关性研究[J].国土资源遥感,2010,22(3):41-46.doi:10.6046/gtzyyg.2010.03.09. Fu Y Z,Wang X Q,Jiang H.The correlation between LAI and vegetation index of masson pine[J].Remote Sensing for Land and Resources,2010,22(3):41-46.doi:10.6046/gtzyyg.2010.03.09.

[18] Hardisky M A,Klemas V,Smart R M.The influence of soil salinity, growth form and leaf moisture on the spectral radiance of spartina alterniflora canopies[J].Photogrammetric Engineering and Remote Sensing,1983,49:77-84.

[19] Gao B C.NDWI:A normalized difference water index for remote sensing of vegetation liquid water from space[J].Remote Sensing of Environment,1996,58(3):257-266.

[1] 吕品, 熊丽媛, 徐争强, 周学铖. 基于FME的矿山遥感监测矢量数据图属一致性检查方法[J]. 自然资源遥感, 2022, 34(1): 293-298.
[2] 张成业, 邢江河, 李军, 桑潇. 基于U-Net网络和GF-6影像的尾矿库空间范围识别[J]. 自然资源遥感, 2021, 33(4): 252-257.
[3] 陈栋, 姚维岭. 基于ArcPy与定制ArcToolbox的矿山新增图斑自动编号及方法改进[J]. 国土资源遥感, 2021, 33(2): 262-269.
[4] 刁明光, 刘文静, 李静, 刘芳, 王彦佐. 矿山遥感监测矢量成果数据动态变化检测方法[J]. 国土资源遥感, 2020, 32(3): 240-246.
[5] 汪洁, 刘小杨, 杨金中, 周英杰, 安娜, 王志晖. 基于国产高空间分辨率卫星数据的浙江省矿山环境恢复治理典型模式分析[J]. 国土资源遥感, 2020, 32(3): 216-221.
[6] 冯力力, 江利明, 柳林, 孙亚飞. 新疆克拉牙依拉克冰川变化(1973—2016)主被动遥感监测分析[J]. 国土资源遥感, 2020, 32(2): 162-169.
[7] 石海岗, 梁春利, 张建永, 张春雷, 程旭. 岸线变迁对田湾核电站温排水影响遥感调查[J]. 国土资源遥感, 2020, 32(2): 196-203.
[8] 刘晰, 郝利娜, 杨显华, 黄洁, 张志, 杨武年. 矿山遥感监测指标快速统计方法研究与实现[J]. 国土资源遥感, 2020, 32(2): 259-265.
[9] 汪洁, 殷亚秋, 于航, 蒋存浩, 万语. 基于RS和GIS的浙江省矿山地质环境遥感监测[J]. 国土资源遥感, 2020, 32(1): 232-236.
[10] 赵玉灵, 杨金中, 殷亚秋, 赵航, 何金宝, 张汉. 海南岛东部滨海锆钛砂矿开发状况遥感监测与生态恢复治理对策研究[J]. 国土资源遥感, 2019, 31(4): 143-150.
[11] 吴海平, 黄世存. 基于深度学习的新增建设用地信息提取试验研究——全国土地利用遥感监测工程创新探索[J]. 国土资源遥感, 2019, 31(4): 159-166.
[12] 陈震, 张耘实, 章远钰, 桑玲玲. 高标准农田建后遥感监测方法[J]. 国土资源遥感, 2019, 31(2): 125-130.
[13] 王海庆, 李丽, 陈玲, 许文佳, 杨金中, 刘琼. 基于尾矿库调查的西藏自治区金属矿开采强度分析[J]. 国土资源遥感, 2019, 31(2): 218-223.
[14] 杨显华, 黄洁, 田立, 彭孛, 肖礼晓, 宋新龙. 矿山遥感监测在采空区稳定性分析中的应用[J]. 国土资源遥感, 2018, 30(3): 143-150.
[15] 张春桂, 林炳青. 基于FY-2E卫星数据的福建沿海海雾遥感监测[J]. 国土资源遥感, 2018, 30(1): 7-7.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发