Please wait a minute...
 
国土资源遥感  2017, Vol. 29 Issue (3): 137-142    DOI: 10.6046/gtzyyg.2017.03.20
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
分维变点法在遥感蚀变异常提取中的应用
韩海辉1, 2, 王艺霖1, 杨敏1, 任广利1, 杨军录1, 李健强1, 高婷1
1.中国地质调查局西安地质调查中心,西安 710054;
2.长安大学地质工程与测绘学院,西安 710054
Application of fractal dimension-change point method to the extraction of remote sensing alteration anomaly
HAN Haihui1, 2, WANG Yilin1, YANG Min1, REN Guangli1, YANG Junlu1, LI Jianqiang1, GAO Ting1
1. Xi’an Center of China Geological Survey, Xi’an 710054, China;
2. School of Geological and Surveying, Chang’an University, Xi’an 710054, China
全文: PDF(5085 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 从遥感蚀变异常主分量图像中提取异常信息,目前主要基于数据的正态分布特征,并未考虑地质异常的非线性特征。针对此问题,提出了分维变点提取算法(fractal dimension-change point method,FDCPM)。首先利用分形模型计算蚀变异常的自相似性参数值,再采用变点模型计算蚀变异常的突变性参数值,然后确定蚀变异常临界阈值,达到有效区分地质背景和蚀变异常的目的。以甘肃北山方山口地区为研究区,对识别的ASTER蚀变异常进行测试和验证,并对其提取精度进行初步评价和比较。结果表明: 对于实验中的褐铁矿、绢云母和绿泥石3种蚀变矿物来说,分维变点法的总体提取精度略高于门限化方法。利用分维变点法提取3种蚀变矿物的正确率均超过83%,且遥感蚀变异常的分布与化探及重砂异常有较高的吻合度,已知金属矿(化)点也几乎都落在遥感蚀变异常区内或其边缘,表明分维变点法行之有效,可作为今后划分地质背景和蚀变异常的方法之一。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
付盈
国巧真
潘应阳
汪东川
关键词 SPOT6规则建筑物提取KNNSVM    
Abstract:At present, the extracting method for remote sensing alteration anomalies from principal component image relies mainly on the data’s normal distribution, without considering the nonlinear characteristics of geological anomaly. To tackle this problem, the authors have proposed the fractal dimension-change point method(FDCPM)in this paper. By calculating the self-similarity and mutability of alteration anomalies with fractal dimension-change point model, the critical threshold of an alteration anomaly was acquired quantitatively. The realization theory and access mechanism of the method were elaborated by an experiment with ASTER data in Fangshankou,Beishan,and the results of the proposed method and traditional method (de-interfered anomalous principal component thresholding technique,DIAPCTT) were compared with each other. The results show that the FDCPM has a relatively high extracting precision than the DIAPCTT for three alteration minerals in the experiment. In this experiment, the accuracy of three alteration minerals could reach over 83%. Moreover, the distribution of remote sensing alteration anomalies agrees well with a large amount of evidence from the geochemical anomaly and the heavy sand anomaly. What’s more, the known polymetallic ore spots and mineralized spots fall in the zone of remote sensing alteration anomaly or at its edge. All the results mentioned above show that the FDCPM is one of the effective distinguishing methods for the geological background and the remote sensing alteration anomaly in the future.
Key wordsSPOT6    rule    building extraction    KNN    SVM
     出版日期: 2017-08-15
基金资助:国家自然科学基金项目“绿泥石矿物近红外光谱吸收谱带的位移机理与控制机制研究”(编号: 41502312)、中国地质调查局地质调查项目“天山—北山成矿带那拉提-营毛沱地区地质矿产调查”(编号: DD20160009)和“十二五”国家科技支撑计划项目“岔路口―神仙湾铅锌成矿带成矿地质背景及靶区优选”(编号: 41502312)共同资助。
作者简介: 韩海辉(1983-),男,高级工程师,主要从事遥感地质研究。Email: hanhh06@hotmail.com。
引用本文:   
韩海辉, 王艺霖, 杨敏, 任广利, 杨军录, 李健强, 高婷. 分维变点法在遥感蚀变异常提取中的应用[J]. 国土资源遥感, 2017, 29(3): 137-142.
HAN Haihui, WANG Yilin, YANG Min, REN Guangli, YANG Junlu, LI Jianqiang, GAO Ting. Application of fractal dimension-change point method to the extraction of remote sensing alteration anomaly. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 137-142.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2017.03.20      或      https://www.gtzyyg.com/CN/Y2017/V29/I3/137
[1] van der Meer F D,van der Werff H M A,van Ruitenbeek F J A,et al.Multi-and hyperspectral geologic remote sensing:A review[J].International Journal of Applied Earth Observation and Geoinformation,2012,14(1):112-128.
[2] 童庆禧,田国良.中国典型地物波谱及其特征分析[M].北京:科学出版社,1990.
Tong Q X,Tian G L.Spectral and Analysis of Typical Earth Objects of China[M].Beijing:Science Press,1990.
[3] Sadeghi B,Khalajmasoumi M,Afzal P,et al.Using ETM + and ASTER sensors to identify iron occurrences in the Esfordi 1∶100 000 mapping sheet of central Iran[J].Journal of African Earth Sciences,2013,85:103-114.
[4] Pournamdari M,Hashim M,Pour A B.Spectral transformation of ASTER and Landsat TM bands for lithological mapping of Soghan ophiolite complex,South Iran[J].Advances in Space Research,2014,54(4):694-709.
[5] 张玉君,曾朝铭,陈 薇.ETM + (TM)蚀变遥感异常提取方法研究与应用——方法选择和技术流程[J].国土资源遥感,2003,15(2):44-49,doi:10.6046/gtzyyg.2003.02.11"> doi:10.6046/gtzyyg.2003.02.11.
Zhang Y J,Zeng Z M,Chen W.The methods for extraction of alteration anomalies from the ETM + (TM) data and their application:Method selection and technological flow chart[J].Remote Sensing for Land and Resources,2003,15(2):44-49,doi:10.6046/gtzyyg.2003.02.11"> doi:10.6046/gtzyyg.2003.02.11.
[6] 陈 聆,郭 科,柳柄利,等.地球化学矿致异常非线性分析方法研究[J].地球物理学进展,2012,27(4):1701-1707.
Chen L,Guo K,Liu B L,et al.The study of non-linear analysis method of geochemical ore-forming anomaly[J].Progress in Geophysics,2012,27(4):1701-1707.
[7] 成秋明,张生元,左仁广,等.多重分形滤波方法和地球化学信息提取技术研究与进展[J].地学前缘,2009,16(2):185-198.
Cheng Q M,Zhang S Y,Zuo R G,et al.The application of fractal dimension-change point method to the extraction of remote sensing alteration anomaly[J].Earth Science Frontiers,2009,16(2):185-198.
[8] 成秋明.成矿过程奇异性与矿床多重分形分布[J].矿物岩石地球化学通报,2008,27(3):298-305.
Cheng Q M.Singularity of mineralization and multifractal distribution of mineral deposits[J].Bulletin of Mineralogy,Petrology and Geochemistry,2008,27(3):298-305.
[9] 梁钰琦,王功文,朱彦彦,等.分形方法在遥感蚀变信息提取中的应用研究[J].遥感技术与应用,2011,26(4):508-511.
Liang Y Q,Wang G W,Zhu Y Y,et al.Alteration from ETM + data rating based on fractal technologies[J].Remote Sensing Technology and Application,2011,26(4):508-511.
[10] 项静恬,史久恩.非线性系统中数据处理的统计方法[M].北京:科学出版社,1997.
Xiang J T,Shi J E.The Statistical Method of Data Processing in Nonlinear System[M].Beijing:Science Press,1997.
[11] 韩海辉,高 婷,易 欢,等.基于变点分析法提取地势起伏度——以青藏高原为例[J].地理科学,2012,32(1):101-104.
Han H H,Gao T,Yi H,et al.Extraction of relief amplitude based on change point method:A case study on the Tibetan Plateau[J].Scientia Geographica Sinica,2012,32(1):101-104.
[12] 任广利,杨军录,杨 敏,等.高光谱遥感异常提取在甘肃北山金滩子——明金沟地区成矿预测中的应用[J].大地构造与成矿学,2013,37(4):765-776.
Ren G L,Yang J L,Yang M,et al.Application of hyperspectral remote sensing anomaly information on metallogenic prediction in the Jintanzi:Mingjingou area of Beishan,Gansu[J].Geotectonica et Metallogenia,2013,37(4):765-776.
[13] 时丕龙,付碧宏,二宫芳树.基于ASTER VNIR-SWIR多光谱遥感数据识别与提取干旱地区岩性信息——以西南天山柯坪隆起东部为例[J].地质科学,2010,45(1):333-347.
Shi P L,Fu B H,Ninomiya Y.Detecting lithologic features from ASTER VNIR-SWIR multispectral data in the arid region:A case study in the eastern Kalpin uplift,southwest Tian Shan[J].Chinese Journal of Geology,2010,45(1):333-347.
[14] 张良培.高光谱目标探测的进展与前沿问题[J].武汉大学学报:信息科学版,2014,39(12):1387-1394,1400.
Zhang L P.Advance and future challenges in hyperspectral target detection[J].Geomatics and Information Science of Wuhan University,2014,39(12):1387-1394,1400.
[15] Liu W J,Xie W C,Tong H B,et al.Adaptive coherence estimator based on the Krylov subspace technique for airborne radar[J].Journal of Systems Engineering and Electronics,2015,26(4):705-712.
[16] 刘旭拢,何春阳,潘耀忠,等.遥感图像分类精度的点、群样本检验与评估[J].遥感学报,2006,10(3):366-372.
Liu X L,He C Y,Pan Y Z,et al.Accuracy assessment of thematic classification based on point and cluster sample[J].Journal of Remote Sensing,2006,10(3):366-372.
[1] 王华, 李卫卫, 李志刚, 陈学业, 孙乐. 基于多尺度超像素的高光谱图像分类研究[J]. 自然资源遥感, 2021, 33(3): 63-71.
[2] 武宇, 张俊, 李屹旭, 黄康钰. 基于改进U-Net的建筑物集群识别研究[J]. 国土资源遥感, 2021, 33(2): 48-54.
[3] 卢麒, 秦军, 姚雪东, 吴艳兰, 朱皓辰. 基于多层次感知网络的GF-2遥感影像建筑物提取[J]. 国土资源遥感, 2021, 33(2): 75-84.
[4] 王小龙, 闫浩文, 周亮, 张黎明, 党雪薇. 利用SVM分类Landsat影像的朝鲜主要城市建设用地时空特征分析[J]. 国土资源遥感, 2020, 32(4): 163-171.
[5] 申振宇, 高小红, 汤敏. 高海拔复杂地形区SPOT6图像大气校正方法对比及精度验证[J]. 国土资源遥感, 2020, 32(1): 81-89.
[6] 娄佩卿, 陈晓雨, 王疏桐, 付波霖, 黄永怡, 唐廷元, 凌铭. 基于无人机影像的喀斯特农耕区地物识别——以桂林市为例[J]. 国土资源遥感, 2020, 32(1): 216-223.
[7] 毛宁, 刘慧平, 刘湘平, 张洋华. 基于RMNE方法的多尺度分割最优分割尺度选取[J]. 国土资源遥感, 2019, 31(2): 10-16.
[8] 周阳, 张云生, 陈斯飏, 邹峥嵘, 朱耀晨, 赵芮雪. 基于DCNN特征的建筑物震害损毁区域检测[J]. 国土资源遥感, 2019, 31(2): 44-50.
[9] 冯娟, 丁建丽, 魏雯瑜. 基于雷达数据的区域土壤盐渍化监测[J]. 国土资源遥感, 2019, 31(1): 195-203.
[10] 涂兵, 张晓飞, 张国云, 王锦萍, 周瑶. 递归滤波与KNN的高光谱遥感图像分类方法[J]. 国土资源遥感, 2019, 31(1): 22-32.
[11] 国贤玉, 李坤, 王志勇, 李宏宇, 杨知. 基于SVM+SFS策略的多时相紧致极化SAR水稻精细分类[J]. 国土资源遥感, 2018, 30(4): 20-27.
[12] 胡屹群, 周绍光, 岳顺, 刘晓晴. 利用局部稀疏不变特征的遥感影像检索[J]. 国土资源遥感, 2018, 30(2): 38-44.
[13] 付盈, 国巧真, 潘应阳, 汪东川. 基于SPOT6数据的建筑物提取规则研究[J]. 国土资源遥感, 2017, 29(3): 65-69.
[14] 樊雪, 刘清旺, 谭炳香. 基于机载PHI高光谱数据的森林优势树种分类研究[J]. 国土资源遥感, 2017, 29(2): 110-116.
[15] 王旭东, 段福洲, 屈新原, 李丹, 余攀锋. 面向对象和SVM结合的无人机数据建筑物提取[J]. 国土资源遥感, 2017, 29(1): 97-103.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发