Please wait a minute...
 
国土资源遥感  2021, Vol. 33 Issue (2): 48-54    DOI: 10.6046/gtzyyg.2020278
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于改进U-Net的建筑物集群识别研究
武宇1(), 张俊1, 李屹旭2(), 黄康钰1
1.贵州大学矿业学院,贵阳 550025
2.贵州大学农学院,贵阳 550025
Research on building cluster identification based on improved U-Net
WU Yu1(), ZHANG Jun1, LI Yixu2(), HUANG Kangyu1
1. School of Mining, Guizhou University, Guiyang 550025, China
2. College of Agriculture, Guizhou University, Guiyang 550025, China
全文: PDF(3690 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

针对U-Net在高分影像建筑物提取中部分建筑物边缘特征易模糊或丢失的问题,提出一种对高分影像建筑物边缘增强,同时对U-Net部分卷积过程进行改进的优化的建筑物提取方法。首先利用域变化递归滤波的方式对建筑物边缘进行增强,将增强后影像输入U-Net神经网络中进行训练; 其次为充分利用建筑物在高分影像上丰富的细节特征,尝试在原U-Net结构基础上,从训练图像和标签中提取成对的补丁以增加训练数据,这些补丁进一步加强了正反向深度学习中建筑物高维特征的获取; 最后在影像上实现建筑物提取。对辽宁省盘锦市邻接渤海湾地区2017年9月29日高分二号影像建筑物提取实验结果表明,对于包含阴影区域干扰较多的非理想样本数据,用U-Net识别建筑物得到的整体分类精度为75.99%,而改进方法最高整体分类精度可达83.12%,较原U-Net网络精度提高7.13百分点,证明该方法行之有效。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
武宇
张俊
李屹旭
黄康钰
关键词 深度学习域变化递归滤波U-Net边缘增强建筑物提取    
Abstract Aim

ing at tackling the problem that some edge features of buildings are easily blurred or lost in the extraction of buildings with high resolution image by U-Net, this paper proposes an optimized building extraction method, which firstly enhances the edge of buildings with high resolution image and simultaneously improves the partial convolution process of U-Net. Specific process is as follows: Firstly, the domain change recursive filtering method is used to enhance the edge of the building, and the enhanced image is input into U-Net neural network results for training. To make full use of the rich details characteristics of the buildings on the GF-2 images, the authors tried to extract pairs from training images and label patch on the basis of the original U-Net structure and in the process of coding decoding, so as to increase the training data. These patches further strengthened the positive and negative deep learning of high-dimensional feature for buildings, thus successfully realizing building image segmentation. In this paper, the experimental results of the extraction of GF-2 image buildings in Panjin City of Liaoning Province adjacent to Bohai Bay on September 29, 2017 show that the overall classification accuracy of the buildings detected by U-Net is 75.99% for the shaded and unsatisfied area sample data, and the maximum overall classification accuracy of this method can reach 83.12%, which is 7.13 percentage higher than that of the original U-Net network. It is proved that the U-NET model combined with domain change recursive filtering is effective.

Key wordsdeep learning    domain change recursive filtering    U-Net    edge enhancement    building extraction
收稿日期: 2020-09-04      出版日期: 2021-07-21
ZTFLH:  TP751  
基金资助:贵州省科学技术基础研究计划项目“基于GPS的地壳弹塑性形变反演模型研究”(黔科[2017]1054);国家自然科学基金项目“基于地表拓扑特征的无控制点矿山变形监测与预警”(41701464);贵州大学研究生创新基地建设项目“测绘科学与技术研究生创新实践基地建设项目”(贵大研CXJD[2014]002)
通讯作者: 李屹旭
作者简介: 武 宇(1995-),男,硕士研究生,目前主要从事InSAR地形变监测与提取、基于深度学习的遥感影像分割理论学习和研究。Email: ywu@niglas.ac.cn
引用本文:   
武宇, 张俊, 李屹旭, 黄康钰. 基于改进U-Net的建筑物集群识别研究[J]. 国土资源遥感, 2021, 33(2): 48-54.
WU Yu, ZHANG Jun, LI Yixu, HUANG Kangyu. Research on building cluster identification based on improved U-Net. Remote Sensing for Land & Resources, 2021, 33(2): 48-54.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2020278      或      https://www.gtzyyg.com/CN/Y2021/V33/I2/48
Fig.1  实验流程图
Fig.2  实验样本
Fig.3  不同参数滤波效果
Fig.4  不同参数对DTRF-UNET输出数据影响
δs δr
0.2 0.3 0.4 0.5 0.6 0.7 0.8
30 80.41 81.94 82.65 83.12 82.96 82.50 81.83
45 80.42 81.96 82.63 83.04 82.86 82.37 81.49
60 80.46 81.97 82.60 83.00 82.82 82.25 81.25
Tab.1  不同参数下DTRF-Unet整体分类精度
Fig.5  改进前后结果对比
[1] 王伟鹏, 戴声奎. 基于域变换递归滤波的雾天图像复原[J]. 计算机应用研究, 2015, 32(2):638-640.
Wang W P, Dai S K. Haze image restoration using domain transform recursive filter[J]. Computer Application Research, 2015, 32(2):638-640.
[2] 彭海涛, 柯长青. 基于多层分割的面向对象遥感影像分类方法研究[J]. 遥感技术与应用, 2010, 25(1):149-154.
Peng H T, Ke C Q. Study on object-oriented remote sensing image classification based on multi levels segmentation[J]. Remote Sensing Technology and Application, 2010, 25(1)149-154.
[3] Camps-Valls G, Gomez-Chova L, Munoz-Mari J, et al. Composite kernels for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2006, 3(1):93-97.
doi: 10.1109/LGRS.2005.857031
[4] 沈毅. 高分辨率遥感图像处理若干关键技术研究[D]. 南京:南京航空航天大学, 2012.
Shen Y. Research on some key technologies of high-resolution remote sensing image processing[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2012.
[5] 眭海刚, 冯文卿, 李文卓, 等. 多时相遥感影像变化检测方法综述[J]. 武汉大学学报(信息科学版), 2018, 43(12):1885-1898.
Sui H G, Feng W Q, Li W Z, et al. Review of change detection methods for multi-temporal remote sensing imagery[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12):1885-1898.
[6] Baltsavias E P. Object extraction and revision by image analysis using existing geodata and knowledge:Current status and steps towards operational systems[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2004, 58(3/4):129-151.
[7] Alarcon-Ramirez A, Rwebangira M R, Chouikha M F, et al. A new methodology based on level sets for target detection in hyperspectral images[J]. IEEE Transactions on Geoence & Remote Sensing, 2016, 54(9):5385-5396.
[8] Wei G, Wen Y, Haijian Z, et al. Geospatial object detection in high resolution satellite images based on multi-scale convolutional neural network[J]. Remote Sensing, 2018, 10(1):131.
doi: 10.3390/rs10010131
[9] 方旭, 王光辉, 杨化超, 等. 结合均值漂移分割与全卷积神经网络的高分辨遥感影像分类[J]. 激光与光电子学进展, 2018, 55(2):022802.
Fang X, Wang G H, Yang H C, et al. High resolution remote sensing image classification combined with mean shift segmentation and full convolutional neural network[J]. Advances in Laser and Optoelectronics, 2018, 55(2):022802.
[10] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[C]// International Conference on Neural Information Processing Systems, 2012, 60(2):1097-1105.
[11] Mou L, Ghamisi P, Zhu X X. Deep recurrent neural networks for hyperspectral image classification[J]. IEEE Transaction Geoscience and Remote Sensing, 2017, 55(7):3639-3655.
doi: 10.1109/TGRS.2016.2636241
[12] 陈睿敏, 孙胜利. 基于深度学习的红外遥感信息自动提取[J]. 红外, 2017, 38(8):37-43.
Chen R M, Sun S L. Automatic extraction of infrared remote sensing information based on deep learning[J]. Infrared, 2017, 38(8):37-43.
[13] 王宁, 程家骅, 张寒野, 等. U-net模型在高分辨率遥感影像水体提取中的应用[J]. 国土资源遥感, 2020, 32(1):35-42.doi: 10.6046/gtzyyg.2020.01.06.
doi: 10.6046/gtzyyg.2020.01.06
Wang N, Cheng J H, Zhang H Y, et al. Application of U-net model to water extraction with high resolution remote sensing data[J]. Remote Sensing for Land and Resources, 2020, 32(1):35-42.doi: 10.6046/gtzyyg.2020.01.06.
doi: 10.6046/gtzyyg.2020.01.06
[14] 李越帅, 郑宏伟, 罗格平, 等. 集成U-Net方法的无人机影像胡杨树冠提取和计数[J]. 遥感技术与应用, 2019, 34(5):939-949.
Li Y S, Zhen H W, Luo G P, et al. Extraction and counting of Populus Euphratica crown using UAV images integrated with U-Net method[J]. Remote Sensing Technology and Application, 2019, 34(5):939-949.
[15] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C]// IEEE Conference on Computer Vision and Pattern Recognition.IEEE, 2015, 79(11):3431-3440.
[16] 苏健民, 杨岚心, 景维鹏. 基于U-Net的高分辨率遥感图像语义分割方法[J]. 计算机工程与应用, 2019, 55(7):207-213.
Su J M, Yang L X, Jing W P. U-Net based semantic segmentation method for high resolution remote sensing image[J]. Computer Engineering and Applications, 2019, 55(7):207-213.
[17] 张慧, 王坤峰, 王飞跃. 深度学习在目标视觉检测中的应用进展与展望[J]. 自动化学报, 2017, 43(8):1289-1305.
Zhang H, Wang K F, Wang F Y. Advances and perspectives on applications of deep learning in visual object detection[J]. Journal of Automation, 2017, 43(8):1289-1305.
[18] 伍广明, 陈奇, Shibasaki R, 等. 基于U型卷积神经网络的航空影像建筑物检测[J]. 测绘学报, 2018, 47(6):864-872.
Wu G M, Chen Q, Shibasaki R, et al. High precision building detection from aerial imagery using a U-Net like convolutional architecture[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(6):864-872.
[19] 向轩琳. 基于域变换递归滤波的高光谱图像分类方法研究[D]. 长沙:湖南大学, 2018.
Xiang X L. Research on hyperspectral image classification method based on domain transform recursive filter[D]. Changsha:Hunan University, 2018.
[20] Gastal E S L, Oliveira M M. Domain transform for edge-aware image and video processing[C]// ACM Transactions on Graphics. 2011, 30(4):1-12.
[21] Kang X D, Duan P H, Li S T. Hyperspectral image visualization with edge-preserving filtering and principal component analysis[J]. Information Fusion, 2020, 57:130-143.
doi: 10.1016/j.inffus.2019.12.003
[22] Ronneberger O, Fischer P, Brox T. U-Net:Convolutional networks for biomedical image segmentation[C]// Medical Image Computing and Computer-Assisted Intervention.Springer, 2015:234-241.
[23] Badrinarayanan V, Kendall A, Cipolla R. SegNet:A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(12):2481-2495.
[24] 张浩然, 赵江洪, 张晓光. 利用U-net网络的高分遥感影像建筑提取方法[J]. 遥感信息, 2020, 35(3):143-150.
Zhang H R, Zhao J H, Zhang X G. High resolution remote sensing image building extraction method using U-net network[J]. Remote Sensing Information, 2020, 35(3):143-150.
[25] Li R, Liu W, Yang L, et al. DeepUNet:A deep fully convolutional network for pixel-level sea-land segmentation[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2018, 11(11):3954-3962.
[26] 郝建亭, 杨武年, 李玉霞, 等. 基于FLAASH的多光谱影像大气校正应用研究[J]. 遥感信息, 2008(1):78-81.
Hao J T, Yang W N, Li Y X, et al. Atmospheric correction of multi-spectral imagery ASTER[J]. Remote Sensing Information, 2008(1):78-81.
[1] 刘立, 董先敏, 刘娟. 顾及地学特征的遥感影像语义分割模型性能评价方法[J]. 自然资源遥感, 2023, 35(3): 80-87.
[2] 牛祥华, 黄微, 黄睿, 蒋斯立. 基于注意力特征融合的高保真遥感图像薄云去除[J]. 自然资源遥感, 2023, 35(3): 116-123.
[3] 林佳惠, 刘广, 范景辉, 赵红丽, 白世彪, 潘宏宇. 联合改进U-Net模型和D-InSAR技术采矿沉陷提取方法[J]. 自然资源遥感, 2023, 35(3): 145-152.
[4] 张仙, 李伟, 陈理, 杨昭颖, 窦宝成, 李瑜, 陈昊旻. 露天开采矿区要素遥感提取研究进展及展望[J]. 自然资源遥感, 2023, 35(2): 25-33.
[5] 刁明光, 刘勇, 郭宁博, 李文吉, 江继康, 王云霄. 基于Mask R-CNN的遥感影像疏林地智能识别方法[J]. 自然资源遥感, 2023, 35(2): 97-104.
[6] 邱磊, 张学志, 郝大为. 基于深度学习的视频SAR动目标检测与跟踪算法[J]. 自然资源遥感, 2023, 35(2): 157-166.
[7] 胡建文, 汪泽平, 胡佩. 基于深度学习的空谱遥感图像融合综述[J]. 自然资源遥感, 2023, 35(1): 1-14.
[8] 赵凌虎, 袁希平, 甘淑, 胡琳, 丘鸣语. 改进Deeplabv3+的高分辨率遥感影像道路提取模型[J]. 自然资源遥感, 2023, 35(1): 107-114.
[9] 张可, 张庚生, 王宁, 温静, 李宇, 杨俊. 基于遥感和深度学习的输电线路地表水深预测[J]. 自然资源遥感, 2023, 35(1): 213-221.
[10] 吕雅楠, 朱红, 孟健, 崔成玲, 宋其淇. 面向高分辨率遥感影像车辆检测的深度学习模型综述及适应性研究[J]. 自然资源遥感, 2022, 34(4): 22-32.
[11] 谭海, 张荣军, 樊文锋, 张一帆, 徐航. 融合多尺度特征的国产光学影像辐射异常分类检测[J]. 自然资源遥感, 2022, 34(4): 97-104.
[12] 苏玮, 林阳阳, 岳文, 陈颖彪. 基于U-Net卷积神经网络的广东省海水养殖区识别及其时空变化遥感监测[J]. 自然资源遥感, 2022, 34(4): 33-41.
[13] 张鹏强, 高奎亮, 刘冰, 谭熊. 联合空谱信息的高光谱影像深度Transformer网络分类[J]. 自然资源遥感, 2022, 34(3): 27-32.
[14] 伊尔潘·艾尼瓦尔, 买买提·沙吾提, 买合木提·巴拉提. 基于GF-2影像和Unet模型的棉花分布识别[J]. 自然资源遥感, 2022, 34(2): 242-250.
[15] 孙宇, 黄亮, 赵俊三, 常军, 陈朋弟, 成飞飞. 结合随机擦除和YOLOv4的高空间分辨率遥感影像桥梁自动检测[J]. 自然资源遥感, 2022, 34(2): 97-104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发