Please wait a minute...
 
国土资源遥感  2019, Vol. 31 Issue (3): 242-249    DOI: 10.6046/gtzyyg.2019.03.30
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
基于MODIS数据的淤泥质海岸水体指数比较与分析——以黄河三角洲海岸为例
吴佳平1, 张旸1(), 张杰2, 范胜龙1, 杨超1, 张小芳1
1. 福建农林大学资源与环境学院,福州 350002
2. 江西省科学院鄱阳湖研究中心,南昌 330096
Comparison and analysis of water indexes in muddy coasts based on MODIS data: A case study of the Yellow River Delta coast
Jiaping WU1, Yang ZHANG1(), Jie ZHANG2, Shenglong FAN1, Chao YANG1, Xiaofang ZHANG1
1. College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
2. Poyang Lake Research Center, Jiangxi Academy of Sciences, Nanchang 330096, China
全文: PDF(3355 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

淤泥质海岸地区具有独特且复杂的水体环境,深入分析水体指数在该区域的性能特点具有重要的科学意义。以黄河三角洲海岸为研究区,使用2008年、2009年和2015年的MODIS和Landsat遥感数据,从地表覆盖类型光谱特征的角度,比较分析6种水体指数(即NDWI,MNDWI,AWEInsh,AWEIsh,TCW和WI2015)的水体提取性能。通过ROC曲线得到各水体指数的最佳阈值,研究水体指数在淤泥质海岸地区的水体提取精度和提取误差,分析不同地表覆盖因素对水体提取性能的影响。研究结果表明,AWEInsh的水体提取效果最佳,总体精度达97.29%,制图精度达96.84%,用户精度达97.69%。各水体指数提取海水的制图精度较高,均高于90%; 陆地水体的提取效果一般,制图精度均低于80%; NDWI对潮滩水的识别能力较差,制图精度低于其他水体指数。各水体指数的陆地水体漏分率较高,海水和潮滩水体的漏分率较低,MNDWI的海水漏分率高于其他水体指数。潮滩土壤对水体提取性能的影响最大,其次为耕地土壤,稀疏植被、茂盛植被和建成区的影响最小。研究结果可为进一步开展淤泥质海岸水体变化监测与分析提供参考依据。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴佳平
张旸
张杰
范胜龙
杨超
张小芳
关键词 MODIS水体指数ROC曲线精度评估黄河三角洲海岸    
Abstract

Muddy coastal areas have a unique and complex water environment. It is of great scientific significance to deeply analyze the water extraction efficiency of water index in this area. The authors took the Yellow River Delta coast as the study area and used the MODIS and Landsat remote sensing data of 2008, 2009 and 2015. The water extraction performance of 6 water index (NDWI, MNDWI, AWEInsh, AWEIsh, TCW, WI2015) were analyzed from spectral characteristics of land cover types. The best threshold of each water index was obtained through the ROC curve. The accuracy and extraction errors of water indexes in muddy coastal area were studied, and the influence of different land cover factors on water extraction was analyzed. The results show that the AWEInsh have the best performance in extraction of water, with an overall accuracy of 97.29%, mapping accuracy of 96.84%, and user accuracy of 97.69%. The accuracy of seawater extraction by different water indexes is higher than 90%. The extraction accuracy of land water is at general level and the map precision is less than 80%. The capability of NDWI for identifying tidal flat water is poor, and the accuracy of mapping is lower than that of other water indexes. The different water indexes have high omission error of land water, and the omission errors of seawater and tidal flat water are low. The MNDWI has the highest omission error of seawater. The influence of the tidal flat soil on the water extraction is the greatest, followed by the cultivated soil. The sparse vegetation, luxuriant vegetation, and built-up area have the least impact. This study provides a reference for the further development of water extraction methods suitable for muddy coastal areas.

Key wordsMODIS    water index    ROC    accuracy evaluation    Yellow River Delta coast
收稿日期: 2018-07-23      出版日期: 2019-08-30
:  TP79  
基金资助:国家自然科学基金项目“鄱阳湖洲滩湿地植物功能群动态过程识别及驱动机制研究”(41661019);“从矿山型棕地到绿色空间: 驱动机制、效益与模式”共同资助(41871208)
通讯作者: 张旸
作者简介: 吴佳平(1991-),男,硕士研究生,主要从事海岸带遥感应用研究。Email: 732446002@qq.com.。
引用本文:   
吴佳平, 张旸, 张杰, 范胜龙, 杨超, 张小芳. 基于MODIS数据的淤泥质海岸水体指数比较与分析——以黄河三角洲海岸为例[J]. 国土资源遥感, 2019, 31(3): 242-249.
Jiaping WU, Yang ZHANG, Jie ZHANG, Shenglong FAN, Chao YANG, Xiaofang ZHANG. Comparison and analysis of water indexes in muddy coasts based on MODIS data: A case study of the Yellow River Delta coast. Remote Sensing for Land & Resources, 2019, 31(3): 242-249.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2019.03.30      或      https://www.gtzyyg.com/CN/Y2019/V31/I3/242
Fig.1  研究区位置
(2009年5月3日Landsat TM B5(R),B4(G), B3(B)合成影像)
传感器 Landsat影像 MODIS影像
成像时间 轨道号 传感器 成像时间 轨道号
Landsat5 TM 20081007T02: 26 121/34 MODIS/Terra 20081007T02: 10 h27v05
Landsat5 TM 20090503T02: 29 121/34 MODIS/Terra 20090503T02: 10 h27v05
Landsat5 TM 20090519T02: 29 121/34 MODIS/Terra 20090519T02: 10 h27v05
Landsat5 TM 20090604T02: 29 121/34 MODIS/Terra 20090604T02: 10 h27v05
Landsat7 ETM+ 20150325T02: 40 121/34 MODIS/Terra 20150325T02: 55 h27v05
Tab.1  研究使用的遥感数据
MODIS影像成像时间 海水 潮滩水体 陆地水体 潮滩土壤 耕地土壤 稀疏植被 茂盛植被 建成区
20081007T02: 10 3 480 108 412 468 109 1 429 707 287
20090503T02: 10 3 402 106 492 783 1 764 35 0 418
20090519T02: 10 3 422 55 523 848 1 121 470 14 547
20090604T02: 10 3 492 41 467 1 062 498 537 301 602
20150325T02: 55 3 408 171 421 648 1 701 0 0 651
Tab.2  各种地表覆盖类型的样本数分布
水体指数 来源 公式
TCW Crist[3] 0.031 5B3+0.202 1B4+0.310 2B1+
0.159 4B2-0.680 6B6-0.610 9B7
NDWI McFeeters[4] (B4-B2)/(B4+B2)
MNDWI 徐涵秋[5] (B4-B6)/(B4+B6)
AWEInsh Feyisa等[6] 4(B4-B6)-(0.25B2+2.75B7)
AWEIsh Feyisa等[6] B3+2.5B4-1.5(B2+B6)-0.25B7
WI2015 Fisher等[7] 1.720 4+171B4+3B1-70B2-45B6-71B7
Tab.3  水体指数计算公式
Fig.2  不同水体指数的ROC曲线
Fig.3  潮滩区MODIS地表反射率特征(×表示均值)
水体
指数
AUC/% FPR/% Kappa
系数
总体精
度/%
制图精
度/%
用户精
度/%
NDWI 99.16 2.34 0.93 96.59 95.78 98.21
MNDWI 98.06 3.36 0.90 93.48 93.93 97.41
AWEInsh 99.54 2.14 0.95 97.29 96.84 97.69
AWEIsh 99.18 2.94 0.94 96.76 96.53 97.51
TCW 99.38 2.38 0.94 96.68 96.63 98.23
WI2015 99.28 3.50 0.94 96.92 97.22 97.39
Tab.4  各水体指数的平均水体提取精度
Fig.4  各水体指数的3种水体制图精度
误差 地表覆盖类型 NDWI MNDWI AWEInsh AWEIsh TCW WI2015
错分误差 潮滩土壤 1.34 2 1.28 1.66 1.41 1.98
耕地土壤 0.41 0.57 0.3 0.55 0.34 0.59
稀疏植被 0 0.02 0.01 0 0.02 0.01
茂盛植被 0 0 0 0 0 0
建成区 0.03 0 0.01 0.02 0.01 0.02
漏分误差 海水 0.32 2.88 0.22 0.26 0.28 0.18
潮滩水体 0.82 0.11 0.07 0.22 0.06 0.11
陆地水体 3.1 3.08 2.85 3 3.04 2.5
Tab.5  不同水体指数的平均水体提取误差
Fig.5  MNDWI的水体提取结果
[1] 水利部海河水利委员会漳河上游管理局, 河北工程大学. 遥感技术在水环境评价中的应用[M]. 北京: 中国水利水电出版社, 2015.
Haihe Water Conservancy Commission of the Ministry of Water Resources Zhanghe Upper Reaches Administration Bureau, Hebei University of Engineering. Application of Remote Sensing Technology in Water Environment Evaluation[M]. Beijing: China Water and Power Press, 2015.
[2] Ji L, Zhang L, Wylie B . Analysis of dynamic thresholds for the normalized difference water index[J]. Photogrammetric Engineering and Remote Sensing, 2009,75(11):1307-1317.
[3] Crist E P . A TM Tasseled Cap equivalent transformation for reflectance factor data[J]. Remote Sensing of Environment, 1985,17(3):301-306.
[4] McFeeters S K . The use of the normalized difference water index (NDWI) in the delineation of open water features[J]. International Journal of Remote Sensing, 1996,17(7):1425-1432.
[5] 徐涵秋 . 利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J]. 遥感学报, 2005,9(5):589-595.
doi: 10.3321/j.issn:1007-4619.2005.05.012
Xu H Q . A study on information extraction of water body with the modified normalized difference water index(MNDWI)[J]. Journal of Remote Sensing, 2005,9(5):589-595.
[6] Feyisa G L, Meilby H, Fensholt R , et al. Automated water extraction index:A new technique for surface water mapping using Landsat imagery[J]. Remote Sensing of Environment, 2014,140(1):23-35.
[7] Fisher A, Flood N, Danaher T . Comparing Landsat water index methods for automated water classification in eastern Australia[J]. Remote Sensing of Environment, 2016,175:167-182.
[8] Sharma R, Tateishi R, Hara K , et al. Developing superfine water index (SWI) for global water cover mapping using MODIS data[J]. Remote Sensing, 2015,7(10):13807-13841.
[9] 莫伟华, 孙涵, 钟仕全 , 等. MODIS水体指数模型(CIWI)研究及其应用[J].遥感信息, 2007(5):16-21.
Mo W H, Sun H, Zhong S Q , et al. Research on the CIWI model and its application[J].Remote Sensing Information, 2007(5):16-21.
[10] Hui F, Xu B, Huang H , et al. Modeling spatial-temporal change of Poyang Lake using multi-temporal Landsat imagery[J]. International Journal of Remote Sensing, 2008,29(20):5767-5784.
[11] Li W B, Du Z Q, Ling F , et al. A comparison of land surface water mapping using the normalized difference water index from TM,ETM+ and ALI[J]. Remote Sensing, 2013,5(11):5530-5549.
[12] 廖程浩, 刘雪华 . MODIS数据水体识别指数的识别效果比较分析[J]. 国土资源遥感, 2008,20(4):22-26.doi: 10.6046/gtzyyg.2008.04.06.
doi: 10.6046/gtzyyg.2008.04.06
Liao C H, Liu X H . An effectiveness comparison between water body indices based on MODIS data[J]. Remote Sensing for Land and Resources, 2008,20(4):22-26.doi: 10.6046/gtzyyg.2008.04.06.
[13] 车向红, 冯敏, 姜浩 , 等. 2000—2013年青藏高原湖泊面积MODIS遥感监测分析[J]. 地球信息科学学报, 2015,17(1):99-107.
doi: 10.3724/SP.J.1047.2015.00099
Che X H, Feng M, Jiang H , et al. Detection and analysis of Qinghai-Tibet Plateau lake area from 2000 to 2013[J]. Journal of Geo-Information Science, 2015,17(1):99-107.
[14] 王净, 李亚春, 景元书 . 基于MODIS数据的水体识别指数方法的比较研究[J]. 气象科学, 2009,29(3):342-347.
Wang J, Li Y C, Jing Y S . Comparison and research on the different index models used in water extraction based on remote sensing data of MODIS[J]. Journal of the Meteorological Sciences, 2009,29(3):342-347.
[15] 成国栋 . 黄河三角洲现代沉积作用及模式[M]. 北京: 地质出版社, 1991: 96-100.
Cheng G D. The Modern Sedimentation and Model of the Yellow River Delta[M]. Beijing: Geological Publishing House, 1991: 96-100.
[16] 时连强, 李九发, 应铭 , 等. 近、现代黄河三角洲发育演变研究进展[J]. 海洋科学进展, 2005,23(1):96-104.
Shi L Q, Li J F, Ying M , et al. Advances in researches on the Modern Yellow River Delta development and evolution[J]. Advances in Marine Science, 2005,23(1):96-104.
[17] Zhang Y . Coastal environmental monitoring using remotely sensed data and GIS techniques in the modern Yellow River Delta,China[J]. Environmental Monitoring and Assessment, 2011,179(1-4):15-29.
[18] 张旸, 陈沈良, 谷国传 . 黄河三角洲沿岸日潮区的空间分布与潮汐特征[J]. 水动力学研究与进展, 2015,30(5):540-548.
Zhang Y, Chen S L, Gu G C . Spatial extent and tidal characteristics of the diurnal tidal zone along the Yellow River Delta coast[J]. Journal of Hydrodynamics, 2015,30(5):540-548.
[19] 张高生, 王仁卿 . 现代黄河三角洲生态环境的动态监测[J]. 中国环境科学, 2008,28(4):380-384.
doi:
Zhang G S, Wang R Q . Research on dynamic monitoring of ecological environment in modern Yellow River Delta[J]. China Environmental Science, 2008,28(4):380-384.
[20] 汪小钦, 王钦敏, 刘高焕 , 等. 黄河三角洲土地利用/覆盖格局与演化分析[J]. 水土保持学报, 2006,20(5):158-161.
Wang X Q, Wang Q M, Liu G H , et al. Analysis of land use and land cover change in Yellow River Delta[J]. Journal of Soil and Water Conservation, 2006,20(5):158-161.
[21] 刘玉洁, 杨忠东 . MODIS遥感信息处理原理与算法[M]. 北京: 科学出版社, 2001: 1-4.
Liu Y J, Yang Z D. The Principle and Algorithm of MODIS Remote Sensing Information Processing[M]. Beijing: Science Press, 2001: 1-4.
[22] Vermote E F, Kotchenova S Y, Ray J P . MODIS Surface Reflectance User’s Guide[M]. Land Surface Reflectance Science Computing Facility, 2011.
[23] Sun Z, Zhao Y, Li S . Research on polarized remote sensing of monitoring of water pollution [C]//International Conference on Bioinformatics and Biomedical Engineering.IEEE, 2010: 1-5.
[24] Fawcett T . An introduction to ROC analysis[J]. Pattern Recognition Letters, 2006,27(8):861-874.
[25] Robin X, Turck N, Hainard A , et al. pROC:An open-source package for R and S+ to analyze and compare ROC curves[J]. BMC Bioinformatics, 2011,12(1):1-8.
[26] 韩震 . 海岸带淤泥质潮滩和Ⅱ类水体悬浮泥沙遥感信息提取与定量反演研究[D]. 上海:华东师范大学, 2004.
Han Z . Remote Sensing Information Extraction and Quantitative Inversion Research of Silt Tidal Fiat and Suspended Sediment of CaseⅡWaters in Coast Zone[D]. Shanghai:East China Normal University, 2004.
[27] 顾燕, 张鹰, 李欢 . 基于实测光谱的潮滩土壤含水量遥感反演模型研究[J]. 湿地科学, 2013,11(2):167-172.
Gu Y, Zhang Y, Li H . Remote sensing retrieval model on soil moisture content of tidal flat based on measured spectra[J]. Wetland Science, 2013,11(2):167-172.
[28] 任广波, 张杰, 马毅 . 黄河三角洲典型植被地物光谱特征分析与可分性查找表[J]. 海洋环境科学, 2015,34(3):420-426.
Ren G B, Zhang J, Ma Y . Spectral discrimination and separable feature lookup table of typical vegetation species in Yellow River Delta wetland[J]. Marine Environmental Science, 2015,34(3):420-426.
[29] 毕乃双, 杨作升, 王厚杰 , 等. 黄河调水调沙期间黄河入海水沙的扩散与通量[J]. 海洋地质与第四纪地质, 2010,30(2):27-34.
Bi N S, Yang Z S, Wang H J , et al. Characteristics of dispersal of the Yellow River water and sediment to the sea during water-sediment regulation period of the Yellow River and its dynamic mechanism[J]. Marine Geology and Quaternary Geology, 2010,30(2):27-34.
[30] Ryu J H, Won J S, Min K D . Waterline extraction from Landsat TM data in a tidal flat:A case study in Gomso Bay,Korea[J]. Remote Sensing of Environment, 2002,83(3):442-456.
[1] 胡盈盈, 戴声佩, 罗红霞, 李海亮, 李茂芬, 郑倩, 禹萱, 李宁. 2001—2015年海南岛橡胶林物候时空变化特征分析[J]. 自然资源遥感, 2022, 34(1): 210-217.
[2] 张爱竹, 王伟, 郑雄伟, 姚延娟, 孙根云, 辛蕾, 王宁, 胡光. 一种基于分层策略的时空融合模型[J]. 自然资源遥感, 2021, 33(3): 18-26.
[3] 韦耿, 侯钰俏, 查勇. 新冠疫情影响下武汉市气溶胶类型变化分析[J]. 自然资源遥感, 2021, 33(3): 238-245.
[4] 韦耿, 侯钰俏, 韩佳媚, 查勇. 基于精细模式气溶胶与WRF模式估算PM2.5质量浓度[J]. 国土资源遥感, 2021, 33(2): 66-74.
[5] 陈宝林, 张斌才, 吴静, 李纯斌, 常秀红. 历史平均值法用于MODIS影像像元云补偿——以甘肃省为例[J]. 国土资源遥感, 2021, 33(2): 85-92.
[6] 苏龙飞, 李振轩, 高飞, 余敏. 遥感影像水体提取研究综述[J]. 国土资源遥感, 2021, 33(1): 9-11.
[7] 程筱茜, 洪友堂, 陈劲松, 叶宝莹. 基于ESTARFM的内陆湖泊遥感动态变化监测[J]. 国土资源遥感, 2020, 32(3): 183-190.
[8] 杨欢, 邓帆, 张佳华, 王雪婷, 马庆晓, 许诺. 基于MODIS EVI的江汉平原油菜和冬小麦种植信息提取研究[J]. 国土资源遥感, 2020, 32(3): 208-215.
[9] 邓刚, 唐志光, 李朝奎, 陈浩, 彭焕华, 王晓茹. 基于MODIS时序数据的湖南省水稻种植面积提取及时空变化分析[J]. 国土资源遥感, 2020, 32(2): 177-185.
[10] 金楷仑, 郝璐. 基于遥感数据与SEBAL模型的江浙沪地区地表蒸散反演[J]. 国土资源遥感, 2020, 32(2): 204-212.
[11] 赵冰, 毛克彪, 蔡玉林, 孟祥金. 中国地表温度时空演变规律研究[J]. 国土资源遥感, 2020, 32(2): 233-240.
[12] 施益强, 邓秋琴, 吴君, 王坚. 厦门市MODIS气溶胶光学厚度与空气质量指数的回归分析[J]. 国土资源遥感, 2020, 32(1): 106-114.
[13] 程宇琪, 王雨晴, 孙静萍, 张成福. 多伦县草原植被覆盖与蒸散量时空变化及其关系[J]. 国土资源遥感, 2020, 32(1): 200-208.
[14] 吴林霖, 官云兰, 李嘉伟, 袁晨鑫, 李睿. 基于MODIS影像喀斯特石漠化状况研究——以贵州省为例[J]. 国土资源遥感, 2019, 31(4): 235-242.
[15] 李恺霖, 张春桂, 廖廓, 李丽纯, 王宏. 福建省空气清新度卫星遥感监测[J]. 国土资源遥感, 2019, 31(4): 151-158.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发