Please wait a minute...
 
国土资源遥感  2020, Vol. 32 Issue (3): 208-215    DOI: 10.6046/gtzyyg.2020.03.27
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
基于MODIS EVI的江汉平原油菜和冬小麦种植信息提取研究
杨欢1(), 邓帆1, 张佳华2(), 王雪婷1, 马庆晓1, 许诺1
1.长江大学地球科学学院,武汉 430100
2.中国科学院空天信息创新研究院,北京 100094
A study of information extraction of rape and winter wheat planting in Jianghan Plain based on MODIS EVI
YANG Huan1(), DENG Fan1, ZHANG Jiahua2(), WANG xueting1, MA Qingxiao1, XU Nuo1
1. School of Geosciences, Yangtze University, Wuhan 430100, China
2. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
全文: PDF(4063 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

两种生育期相近的作物在遥感识别时容易造成混淆,给作物识别和面积提取工作带来困难。针对这一问题,以江汉平原为研究区,根据不同地物的MODIS EVI时序曲线,结合地物本身的光谱特征和农作物物候信息,利用决策树和二次差分法相结合方法提取2010年江汉平原油菜和冬小麦的种植面积。结果表明,与统计数据相比,研究区油菜和冬小麦种植面积遥感提取结果的总体精度分别为93.7%和87.1%; 市(县、区)水平上,油菜与统计数据的相关系数R 2为0.88,冬小麦为0.90。本研究能够较准确地识别生育期相近的油菜和冬小麦,从而获得较好的种植面积提取结果,具有一定的普适性,可为江汉平原的油菜和冬小麦监测及估产提供技术支持。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨欢
邓帆
张佳华
王雪婷
马庆晓
许诺
关键词 油菜冬小麦面积提取MODIS EVI江汉平原    
Abstract

Two crops with similar growth periods are likely to be confused during remote sensing recognition,which brings difficulties to crop identification and area extraction. For the purpose of solving this problem,Jianghan Plain was used as the study area and,according to the MODIS EVI timing curve of different features in combination with the spectral characteristics of the objects themselves and the phenological information of crops,the combination of decision tree and quadratic difference method was used to extract the planting area of rape and winter wheat in Jianghan Plain in 2010. The results showed that, compared with the statistical data,the overall accuracy of remote sensing extraction of rape and winter wheat planting area in the study area was 93.7% and 87.1%,respectively, and that, at the city (county, district) level,the correlation coefficient R 2 between calculated data and statistical data is 0.88,and the winter wheat is 0.90. This study can accurately identify rape and winter wheat with similar growth periods so as to obtain better results of planting area extraction,which has certain universality and can provide technical support for monitoring and estimating yield of rape and winter wheat in Jianghan Plain.

Key wordsrape    winter wheat    area extraction    MODIS EVI    Jianghan Plain
收稿日期: 2019-09-18      出版日期: 2020-10-09
:  S127  
  TP79  
基金资助:国家自然科学基金项目“遥感、作物模型耦合土壤多层水平衡与根系垂直分布模拟干旱对作物产量的影响”(41871253)
通讯作者: 张佳华
作者简介: 杨欢(1995-),女,硕士研究生,主要从事农业与土地利用遥感方面的研究。Email: yanghuan1105@163.com
引用本文:   
杨欢, 邓帆, 张佳华, 王雪婷, 马庆晓, 许诺. 基于MODIS EVI的江汉平原油菜和冬小麦种植信息提取研究[J]. 国土资源遥感, 2020, 32(3): 208-215.
YANG Huan, DENG Fan, ZHANG Jiahua, WANG xueting, MA Qingxiao, XU Nuo. A study of information extraction of rape and winter wheat planting in Jianghan Plain based on MODIS EVI. Remote Sensing for Land & Resources, 2020, 32(3): 208-215.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2020.03.27      或      https://www.gtzyyg.com/CN/Y2020/V32/I3/208
Fig.1  研究区和参考区
Tab.1  湖北省油菜与冬小麦物候期
Fig.2  油菜、冬小麦遥感提取流程图
Fig.3  参考区油菜种植面积分布
Fig.4  江汉平原不同地物时序EVI曲线
Fig.5  决策树模型
Fig.6  决策树分类结果
Fig.7  P2中峰值频数等于2的像元和油菜、冬小麦空间分布
类别 统计面积/hm2 提取面积/hm2 精度/%
油菜 512 610 545 170 93.7
冬小麦 321 080 362 480 87.1
Tab.2  基于统计数据的总面积精度验证
县级行
政区
油菜 冬小麦
统计值/
(103hm2)
提取值/
(103hm2)
统计值/
(103hm2)
提取值/
(103hm2)
荆州 荆州区 17.93 25.70 11.75 10.43
监利市 70.97 43.19 15.85 13.65
公安县 38.69 46.08 21.78 25.83
松滋市 35.23 19.10 14.23 17.34
洪湖市 29.33 28.26 22.88 14.79
石首市 25.35 30.31 1.22 4.51
江陵县 21.35 31.10 14.20 42.14
沙市区 3.84 9.30 6.25 7.23
荆门 沙洋县 41.62 87.15 18.05 16.78
钟祥市 39.21 30.61 35.75 60.19
京山市 15.36 6.15 30.38 17.23
东宝区 8.86 9.19 5.07 5.72
掇刀区 11.85 15.03 30.38 1.87
仙桃 50.25 54.77 20.90 22.13
潜江 35.09 72.81 30.64 35.97
天门 66.10 37.21 52.56 66.79
Tab.3  基于统计数据的相关性验证
Fig.8  遥感提取结果与统计数据相似性分析
Fig.9  江陵县标准假彩色合成图以及油菜和冬小麦空间分布
Fig.10  2011年油菜和冬小麦面积提取结果
[1] 胡琼. 基于时序MODIS影像的农作物遥感识别方法研究[D]. 北京:中国农业科学院, 2018: 17-33.
Hu Q. Research on crop remote sensing recognition method based on time series MODIS image[D]. Beijing:Chinese Academy of Agricultural Sciences, 2018: 17-33.
[2] Wu B, Gommes R, Zhang M, et al. Global crop monitoring:A satellite-based hierarchical approach[J]. Remote Sensing, 2015,7(4):3907-3933.
doi: 10.3390/rs70403907
[3] 张煦. 基于MODIS-NDVI时间序列数据的油菜识别与复种指数提取[D]. 武汉:华中农业大学, 2015: 6-11.
Zhang X. Identification of rapeseed and multiple cropping index based on MODIS-NDVI time series data[D]. Wuhan:Huazhong Agricultural University, 2015: 6-11.
[4] 梁益同, 万君. 基于HJ-1A/B-CCD影像的湖北省冬小麦和油菜分布信息的提取方法[J]. 中国农业气象, 2012,33(4):573-578.
doi: 10.3969/j.issn.1000-6362.2012.04.015
Liang Y T, Wan J. Extraction method of winter wheat and rape distribution information in Hubei Province based on HJ-1A/B-CCD image[J]. Chinese Journal of Agrometeorology, 2012,33(4):573-578.
doi: 10.3969/j.issn.1000-6362.2012.04.015
[5] 潘耀忠, 李乐, 张锦水, 等. 基于典型物候特征的MODIS-EVI时间序列数据农作物种植面积提取方法——小区域冬小麦实验研究[J]. 遥感学报, 2011,15(3):578-594.
doi: 10.11834/jrs.20110066
Pan Y Z, Li L, Zhang J S, et al. Extraction method of crop planting area based on typical phenological characteristics of MODIS-EVI time series data:Experimental study on winter wheat in small area[J]. Journal of Remote Sensing, 2011,15(3):578-594.
doi: 10.11834/jrs.20110066
[6] 李卫国, 李花, 王纪华, 等. 基于Landsat/TM遥感的冬小麦长势分级监测研究[J]. 麦类作物学报, 2010,30(1):92-95.
doi: 10.7606/j.issn.1009-1041.2010.01.019
Li W G, Li H, Wang J H, et al. Study on the grading monitoring of winter wheat growth based on Landsat/TM remote sensing[J]. Journal of Triticeae Crops, 2010,30(1):92-95.
doi: 10.7606/j.issn.1009-1041.2010.01.019
[7] Jakubauskas M E, Legates D R, Kastens J H. Crop identification using harmonic analysis of time-series AVHRR NDVI data[J]. Computers & Electronics in Agriculture, 2002,37(1):127-139.
[8] Hill M J, Donald G E. Estimating spatio-temporal patterns of agricultural productivity in fragmented landscapes using AVHRR NDVI time series[J]. Remote Sensing of Environment, 2003,84(3):367-384.
doi: 10.1016/S0034-4257(02)00128-1
[9] 郭昱杉, 刘庆生, 刘高焕, 等. 基于MODIS时序NDVI主要农作物种植信息提取研究[J]. 自然资源学报, 2017,32(10):1808-1818.
Guo Y S, Liu Q S, Liu G H, et al. Research on planting information extraction of main crops based on MODIS timing NDVI[J]. Journal of Natural Resources, 2017,32(10):1808-1818.
[10] 尤慧, 苏荣瑞, 肖玮钰, 等. 基于MODIS EVI时序数据的江汉平原油菜种植分布信息提取[J]. 国土资源遥感, 2018,30(1):173-179.doi: 10.6046/gtzyyg.2018.01.24.
You H, Su R R, Xiao W Y, et al. Extraction of Jianghan Plain oil vegetable planting distribution information based on MODIS EVI time series data[J]. Remote Sensing for Land and Resources, 2018,30(1):173-179.doi: 10.6046/gtzyyg.2018.01.24.
[11] Lhermitte S, Verbesselt J, Verstraeten W W, et al. A comparison of time series similarity measures for classification and change detection of ecosystem dynamics[J]. Remote Sensing of Environment, 2011,115(12):31-52.
[12] 康峻, 侯学会, 牛铮, 等. 基于拟合物候参数的植被遥感决策树分类[J]. 农业工程学报, 2014,30(9):148-156.
Kang J, Hou X H, Niu Z, et al. Vegetation remote sensing decision tree classification based on fitting phenological parameters[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014,30(9):148-156.
[13] 张煦, 马驿, 郑雯, 等. 基于时序MODIS-NDVI的油菜种植面积变化趋势分析——以江汉平原为例[J]. 长江流域资源与环境, 2016,25(3):412-419.
doi: 10.11870/cjlyzyyhj201603007
Zhang X, Ma Y, Zheng W, et al. Analysis of the change trend of rapeseed planting area based on time series MODIS-NDVI:Taking Jianghan Plain as an example[J]. Journal of Yangtze River Resources and Environment, 2016,25(3):412-419.
[14] 申健, 常庆瑞, 李粉玲, 等. 基于时序NDVI的关中地区冬小麦种植信息遥感提取[J]. 农业机械学报, 2017,48(3):215-220,260.
Shen J, Chang Q R, Li F L, et al. Remote sensing extraction of winter wheat planting information in Guanzhong area based on time series NDVI[J]. Transactions of the Chinese Society of Agricultural Machinery, 2017,48(3):215-220,260.
[15] 张莎, 张佳华, 白雲, 等. 基于MODIS-EVI及物候差异免阈值提取黄淮海平原冬小麦面积[J]. 农业工程学报, 2018,34(11):150-158.
Zhang S, Zhang J H, Bai Y, et al. Extraction of winter wheat area in Huanghuaihai Plain based on MODIS-EVI and phenological difference threshold extraction[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018,34(11):150-158.
[16] 王琳, 景元书, 杨沈斌. 基于多时相遥感数据提取水稻种植面积的研究[J]. 中国农业资源与区划, 2013,34(2):21-26.
Wang L, Jing Y S, Yang S B. Study on extraction of rice planting area based on multi-temporal remote sensing data[J]. China’s Agricultural Resources and Zoning, 2013,34(2):21-26.
[17] 湖北省统计局. 湖北统计年鉴[M]. 北京: 中国统计出版社, 2010.
Hubei Provincial Statistics Bureau. Hubei statistical yearbook[M]. Beijing: China Statistics Press, 2010.
[18] 王利军, 郭燕, 贺佳, 等. 基于决策树和SVM的Sentinel-2A影像作物提取方法[J]. 农业机械学报, 2018,49(9):146-153.
Wang L J, Guo Y, He J, et al. Sentinel-2A image crop extraction method based on decision tree and SVM[J]. Transactions of the Chinese Society of Agricultural Machinery, 2018,49(9):146-153.
[19] 王雪婷, 张莎, 邓帆, 等. 基于作物空间物候差异提取黄淮海夏玉米种植面积[J]. 中国农业气象, 2019,40(10):647-659.
Wang X T, Zhang S, Deng F, et al. Extraction of summer maize planting area in Huang-Huai-Hai based on differences in crop space phenology[J]. China Agricultural Meteorology, 2019,40(10):647-659.
[20] 王凯, 张佳华. 基于MODIS数据的湖北省油菜种植分布信息提取[J]. 国土资源遥感, 2015,27(3):65-70.doi: 10.6046/gtzyyg.2015.03.12.
doi: 10.6046/gtzyyg.2015.03.12
Wang K, Zhang J H. Extraction of rapeseed planting distribution information based on MODIS data in Hubei Province[J]. Remote Sensing for Land and Resources, 2015,27(3):65-70.doi: 10.6046/gtzyyg.2015.03.12.
[21] 贺原惠子, 王长林, 贾慧聪, 等. 基于随机森林算法的冬小麦提取研究[J]. 遥感技术与应用, 2018,33(6):1132-1140.
He Y H Z, Wang C L, Jia H C, et al. Research on winter wheat extraction based on random forest algorithm[J]. Remote Sensing Technology and Application, 2018,33(6):1132-1140.
[22] 湖北省统计局. 湖北统计年鉴[M]. 北京: 中国统计出版社, 2011.
Hubei Provincial Statistics Bureau. Hubei statistical yearbook[M]. Beijing: China Statistics Press, 2011.
[1] 王碧晴, 韩文泉, 许驰. 基于图像分割和NDVI时间序列曲线分类模型的冬小麦种植区域识别与提取[J]. 国土资源遥感, 2020, 32(2): 219-225.
[2] 袁辉, 秦其明, 孙元亨. 河南漯河郾城区冬小麦LAI反演结果真实性检验[J]. 国土资源遥感, 2020, 32(1): 162-168.
[3] 侯学会, 隋学艳, 姚慧敏, 梁守真, 王猛. 基于物候信息的山东省冬小麦长势遥感监测[J]. 国土资源遥感, 2018, 30(2): 171-177.
[4] 刘佳, 辛鑫, 刘斌, 邸凯昌, 岳宗玉, 王承安. 基于DMSP/OLS夜间灯光影像的2000—2013年鄂尔多斯市城市扩张遥感制图与驱动因子分析[J]. 国土资源遥感, 2018, 30(1): 166-172.
[5] 尤慧, 苏荣瑞, 肖玮钰, 刘凯文, 高华东. 基于MODIS EVI时序数据的江汉平原油菜种植分布信息提取[J]. 国土资源遥感, 2018, 30(1): 173-179.
[6] 赵庆庆, 姜鲁光, 李文叶, 封志明. 鲁西北平原冬小麦种植格局时空变化: 2000―2014[J]. 国土资源遥感, 2017, 29(2): 173-180.
[7] 王凯, 张佳华. 基于MODIS数据的湖北省油菜种植分布信息提取[J]. 国土资源遥感, 2015, 27(3): 65-70.
[8] 权文婷, 王钊. 冬小麦种植面积遥感提取方法研究[J]. 国土资源遥感, 2013, 25(4): 8-15.
[9] 赵俊芳, 房世波, 郭建平. 受蚜虫危害与干旱胁迫的冬小麦高光谱判别[J]. 国土资源遥感, 2013, 25(3): 153-158.
[10] 赵莲, 张锦水, 胡潭高, 陈联裙, 李乐. 变端元混合像元分解冬小麦种植面积测量方法[J]. 国土资源遥感, 2011, 23(1): 66-72.
[11] 钟仕全, 陈燕丽, 莫建飞, 陈玉兰. 基于中巴02B星遥感数据的油菜识别技术研究[J]. 国土资源遥感, 2010, 22(2): 77-79.
[12] 陈雪洋, 蒙继华, 杜鑫, 张飞飞, 张淼, 吴炳方. 基于环境星CCD数据的冬小麦叶面积指数遥感监测模型研究[J]. 国土资源遥感, 2010, 22(2): 55-58.
[13] 刘东升, 李淑敏. 北京地区冬小麦冠层光谱数据与叶面积指数统计关系研究[J]. 国土资源遥感, 2008, 20(4): 32-34.
[14] 晓毅. 从两个数字,看遥感信息的管理决策意义[J]. 国土资源遥感, 1998, 10(2): 61-61.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发