Please wait a minute...
 
国土资源遥感  2020, Vol. 32 Issue (2): 138-145    DOI: 10.6046/gtzyyg.2020.02.18
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
一种综合DEM和遥感影像提取洪积扇的方法
梁凯旋1,2, 章桂芳1,2,3(), 张浩然1,2
1.中山大学地球科学与工程学院,广州 510275
2.广东省地球动力作用与地质灾害重点实验室,广州 510275
3.南方海洋科学与工程广东省实验室(珠海),珠海 519000
A method for extracting alluvial fan based on DEM and remote sensing data
Kaixuan LIANG1,2, Guifang ZHANG1,2,3(), Haoran ZHANG1,2
1. School of Earth Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
2. Guangdong Provincal Key Lab of Geodynamics and Geohazards, Guangzhou 510275, China
3. Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai),Zhuhai 519000, China
全文: PDF(6632 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

综合数字高程模型(digital elevation model,DEM)和遥感影像数据,提出了一种通过确定洪积扇的扇顶点、扇前缘点和侧面边缘点来实现洪积扇提取的新方法。首先,基于水文分析确定洪积扇的扇顶点; 其次,根据洪积扇与冲积平原交界处有明显坡折的特点,基于DEM高程拟合确定扇前缘点; 然后,通过DEM高程拟合和遥感影像特征共同确定侧面边缘点。选取贺兰山东麓作为试验区对区域内的洪积扇进行提取,与目视解译的结果对比表明,提取的洪积扇形态更加客观和稳定,同时对植被覆盖和人类活动影响较大地区的洪积扇具有很好的提取效果,克服了目视解译的局限性。该方法对实现洪积扇的自动提取,进而进行其形态和沉积特征研究具有重要意义。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
梁凯旋
章桂芳
张浩然
关键词 洪积扇扇前缘扇顶扇侧面边缘DEM贺兰山    
Abstract

Based on DEM and remote sensing data, this paper proposes a new method for extracting alluvial fan by determining the fan apex point, leading edge points and side edge points. Firstly, the fan apex point is determined by hydrological analysis. Secondly, the fan leading edge points are determined by DEM elevation fitting curve according to the obvious slope break at the boundary of alluvial fan and alluvial plain. Finally, the side edge points are interpreted by DEM elevation fitting curve and remote sensing data. Taking the eastern foot of Helan Mountain as a study case, the authors detected that the alluvial fans extracted by the proposed method are more objective and stable than visual interpretation from available studies. Moreover, this method can extract the alluvial fan more effectively under the complex condition with vegetation coverage and human activities, which is difficult for visual interpretation. The method is significant for alluvial fan extraction and also for the research on landform and sedimentary characteristics of alluvial fan.

Key wordsalluvial fan    fan leading edge    fan apex    side edge    DEM    Helan Mountain
收稿日期: 2019-04-26      出版日期: 2020-06-18
:  TP751.1  
基金资助:广州市科技计划项目“基于遥感的珠江河口悬浮泥沙时空动态特征研究”(201707010209);广东省基础与应用基础研究基金项目“丹霞地貌发育阶段的定量表征及因素分析”(2019A1515010733);高校基本科研业务费青年教师培育基金项目“基于高光谱的新疆天山地区油苗出露区光谱响应特征研究”(17lgpy49);国家自然科学基金项目“含油气盆地地表典型烃蚀变高光谱遥感响应机理研究”(41402297);“晋陕峡谷阶地分布的时空差异及其对黄河行程演化的反映”(41572178)
通讯作者: 章桂芳
作者简介: 梁凯旋(1997-),男,硕士研究生,主要从事遥感和第四纪地质研究工作。Email: 981001213@qq.com。
引用本文:   
梁凯旋, 章桂芳, 张浩然. 一种综合DEM和遥感影像提取洪积扇的方法[J]. 国土资源遥感, 2020, 32(2): 138-145.
Kaixuan LIANG, Guifang ZHANG, Haoran ZHANG. A method for extracting alluvial fan based on DEM and remote sensing data. Remote Sensing for Land & Resources, 2020, 32(2): 138-145.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2020.02.18      或      https://www.gtzyyg.com/CN/Y2020/V32/I2/138
Fig.1  山前洪积扇简图和高程纵剖面
Fig.2  技术路线
Fig.3  洪积扇扇顶点的提取
Fig.4  扇前缘点的提取
Fig.5  侧面边缘点的提取
Fig.6  扇顶点、扇前缘点和侧面边缘点的提取结果
Fig.7  洪积扇轮廓连接和平滑
Fig.8  试验区遥感影像和位置
Fig.9  贺兰山东麓提取结果
(Landsat 8 B4(R),B3(G),B2(B)合成影像)
扇名 编号 扇面积/km2 扇面宽长比 扇顶角/(°)
本文方法 文献[26] 文献[15] 本文方法 文献[26] 文献[15] 本文方法 文献[26] 文献[15]
大武口 1 56.30 54.46 0.83 1.16 72 67
鬼头沟 2 29.73 28.64 0.61 1.06 110 95
大风沟 3 20.39 23.56 1.14 1.09 125 86
汝箕沟 4 6.94 9.09 0.98 1.11 110 85
小水沟 5 6.54 7.25 1.48 1.55 115 90
大水沟 6 9.16 14.07 29.80 1.02 1.65 0.65 105 131 103
西伏沟 7 14.80 27.60 19.04 0.74 0.69 0.65 95 77 122
插旗口 8 48.90 54.32 49.07 0.95 0.79 0.82 105 108 88
贺兰口 9 25.99 32.52 25.87 0.84 0.61 0.75 142 144 143
苏峪口 10 24.62 40.26 29.55 0.56 0.51 0.48 90 87 98
黄旗口 11 32.69 33.01 31.93 0.78 0.74 0.68 142 138 153
甘沟 12 56.89 61.05 34.22 0.80 0.59 0.51 60 57 63
山咀沟 13 14.62 13.02 0.97 1.12 180 131
Tab.1  本研究结果与前人目视解译结果对比
Fig.10  3种洪积扇提取结果对比
Fig.11  汝箕沟洪积扇的复杂条件
[1] Drew F. Alluvial and lacustrine deposits and glacial records of the upper Indus basin[J].Geological Society of London Quaterly Journal, 1873,29:441-471.
[2] 曹伯勋. 地貌学及第四纪地质学[M]. 武汉: 中国地质大学出版社, 1995: 70-75.
Cao B X. Geomorphology and quaternary geology[M]. Wuhan: China University of Geosciences Press, 1995: 70-75.
[3] 张珂. 地貌学与第四纪地质学的基本理论及应用[M]. 广州:[s.n.], 2015: 89-91.
Zhang K. Fundamentals and applications of geomorphology and quaternary geology[M]. Guangzhou:[s.n], 2015: 89-91.
[4] 白毛伟, 谢小平, 陈芝聪, 等. 龙门山北东段山前涪江第四纪冲积扇地貌演化及其构造响应[J]. 沉积学报, 2017,35(1):85-92.
doi: 10.14027/j.cnki.cjxb.2017.01.009
Bai M W, Xie X P, Chen Z C, et al. Geomorphological evolution of quaternary alluvial fans and its response to tectonic activity along the Fujiang River,northeastern Longmen Mountains[J]. Acta Sedimentologica Sinica, 2017,35(1):85-92.
doi: 10.14027/j.cnki.cjxb.2017.01.009
[5] Lee J H, Chough S K, Jo H R. Development of a streamflow-dominated alluvial-fan system in the southwestern margin of Gyeongsang basin(Lower Cretaceous):Implications for initial basin-fill history[J]. Geosciences Journal, 2019,23(2):189-200.
doi: 10.1007/s12303-018-0073-5
[6] Rockwell T K, Masana E, Sharp W D, et al. Late Quaternary slip rates for the southern Elsinore fault in the Coyote Mountains,southern California from analysis of alluvial fan landforms and clast provenance,soils and U-series ages of pedogenic carbonate[J]. Geomorphology, 2019,326:68-89.
doi: 10.1016/j.geomorph.2018.02.024
[7] Blair T C. Sedimentology of the debris-flow-dominated Warm Spring Canyon alluvial fan,Death Valley,California[J]. Sedimentology, 1999,46(5):941-965.
doi: 10.1046/j.1365-3091.1999.00260.x
[8] 莫多闻, 朱忠礼, 万林义. 贺兰山东麓冲积扇发育特征[J]. 北京大学学报(自然科学版), 1999,35(6):91-98.
Mo D W, Zhu Z L, Wan L Y. The alluvial fans along the eastern foot of Helan Mountain[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 1999,35(6):91-98.
[9] Blair T C, McPherson J G.Processes and forms of alluvial fans[M]. Berlin:Springer Netherlands, 2009: 413-467.
[10] Tom G, Farr O A, Chadwick.Geomorphic processes and remote sensing signatures of alluvial fans in the Kun Lun Mountains,China[J]. Journal of Geophysical Research Planets, 1996,101(E10):23091-23100.
[11] 崔卫国, 穆桂金, 夏斌, 等. 玛纳斯河山麓冲积扇演变遥感研究[J].地理与地理信息科学, 2006(3):39-42.
Chui W G, Mu G J, Xia B, et al. Evolution of alluvial fans at range-front of Tian Mountains in Manas River valley based on remote sensing technology[J].Geography and Geo-Information Science, 2006(3):39-42.
[12] 谢小平, 白毛伟, 陈芝聪, 等. 龙门山断裂带北东段活动断裂的遥感影像解译及构造活动性分析[J]. 国土资源遥感, 2019,31(1):237-246.doi: 10.6046/gtzyyg.2019.01.31.
Xie X P, Bai M W, Chen Z C, et al. Remote sensing image interpretation and tectonic activity study of the active faults along the northeastern segment of the Longmenshan fault[J]. Remote Sensing for Land and Resources, 2019,31(1):237-246.doi: 10.6046/gtzyyg.2019.01.31.
[13] 陈颖. 祁连山北麓洪积扇坡度特征及其控制因素分析[D]. 兰州:兰州大学, 2016.
Chen Y. Characteristics and controlling factors of alluvial fan slopes in the northern piedmont of the Qilian Shan[D]. Lanzhou:Lanzhou University, 2016.
[14] 李新坡, 莫多闻, 朱忠礼. 侯马盆地冲积扇及其流域地貌发育规律[J]. 地理学报, 2006,61(3):241-248.
doi: 10.11821/xb200603002
Li X P, Mo D W, Zhu Z L. Development of alluvial fans and their catchments in Houma basin[J]. Acta Geographica Sinica, 2006,61(3):241-248.
doi: 10.11821/xb200603002
[15] 李庶波, 张珂, 章桂芳, 等. 基于GIS技术研究贺兰山、罗山洪积扇特征与山脉抬升关系[J]. 山地学报, 2015,33(3):268-278.
Li S B, Zhang K, Zhang G F, et al. The relationship between alluvial fans and mountain uplift in Helanshan and Luoshan Mountains in northwestern China based on GIS technique[J]. Mountain research, 2015,33(3):268-278.
[16] Gianluca N, Maria C Z, Iris J O, et al. Delineation of alluvial fans from digital elevation models with a GIS algorithm for the geomorphological mapping of the Earth and Mars[J]. Geomorphology, 2016,273:134-149.
doi: 10.1016/j.geomorph.2016.08.010
[17] Argialas D P, Tzotos A. Automatic extraction of alluvial fans from ASTER L1 satellite data and a digital elevation model using object-oriented image [C]//Istanbul:Geomatica, 2004: 12-23.
[18] Roberts N, Cunningham D. Automated alluvial fan discrimination, quaternary fault identification,and the distribution of tectonically reactivated crust in the Gobi Altai region,southern Mongolia[J]. International Journal of Remote Sensing, 2008,29(23):6957-6969.
doi: 10.1080/01431160802220227
[19] 杨树文, 刘涛, 冯光胜, 等. 利用ETM+影像自动提取河流冲积扇的方法[J]. 测绘科学, 2013,38(3):166-168.
Yang S W, Liu T, Feng G S, et al. Automatic extraction method of alluvial fan based on ETM+ images[J]. Science of Surveying and Mapping, 2013,38(3):166-168.
[20] 中国科学院地理研究所经济地理研究室. 中国农业地理总论[M]. 北京: 科学出版社, 1980: 3-9.
Department of Economic Geography,Institute of Geography,Chinese Academy of Sciences. General introduction of agricultural geography in China[M]. Beijing: Science Press, 1980: 3-9.
[21] Wells S G, Harvey A M. Sedimentologic and geomorphic variations in storm generated alluvial fans,Howgill Fells,northwest England[J]. Geological Society of America Bulletin, 1987,98(2):182-198.
doi: 10.1130/0016-7606(1987)98<182:SAGVIS>2.0.CO;2
[22] Saito K, Oguchi T. Slope of alluvial fans in humid regions of Japan,Taiwan and the Philippines[J]. Geomorphology, 2005,70:147-167.
doi: 10.1016/j.geomorph.2005.04.006
[23] Harvey A, Mather A E, Stokes M. Alluvial fans:Geomorphology,sedimentology,dynamics-introduction,a review of alluvial fan research[J]. Geological Society London Special Publications, 2005,251(1):1-8.
doi: 10.1144/GSL.SP.2005.251.01.01
[24] Guerit L, Metivier F, Devauchelle O, et al. Laboratory alluvial fans in one dimension[J]. Physical Review E Statistical Nonlinear and Soft Matter Physics, 2014,90(2):1-8.
[25] Dechant L J, Pease P P, Tchakerian V P. Modelling alluvial fan morphology[J]. Earth Surface Processes and Landforms, 1999,24(7):641-652.
[26] 李新坡. 中国北方地区冲积扇地貌发育特征与影响因素分析[D]. 北京:北京大学, 2007.
Li X P. Geomorphology and affecting factors analysis of alluvial fans in north China[D]. Beijing:Peking University, 2007.
[27] 杨景春, 李有利. 地貌学原理[M]. 北京: 北京大学出版社, 2017: 37-42.
Yang J C, Li Y L. Fundamentals of geomorphology[M]. Beijing: Peking University Press, 2017: 37-42.
[28] 田明中, 程捷. 第四纪地质学与地貌学[M]. 北京: 地质出版社, 2008: 54-59.
Tian M Z, Chen J. Quaternary geology and geomorphology[M]. Beijing: Geological Publishing House, 2008: 54-59.
[29] 国家地震局《鄂尔多斯周缘活动断裂系》课题组. 鄂尔多斯周缘活动断裂系[M]. 北京: 地震出版社, 1987: 20-21.
The China Earthquake Administration Research Group on the Active Fault Around Erdos Basin. The active fault around Erdos basin[M]. Beijing: Earthquake Press, 1987: 20-21.
[30] 刘建辉, 张培震, 郑德文, 等. 贺兰山晚新生代隆升的剥露特征及其隆升模式[J]. 中国科学:地球科学, 2010,40(1):50-60.
Liu J H, Zhang P Z, Zheng D W, et al. The feature and pattern of late Cenozoic uplift and exhumation of the Helan Shan[J]. Scientia Sinica Terrae, 2010,40(1):50-60.
[31] Darby B J, Ritts B D. Mesozoic contractional deformation in the middle of the Asian tectonic collage:The intraplate Western Ordos fold-thrust belt,China[J]. Earth and Planetary Science Letters, 2002,205(1-2):13-24.
doi: 10.1016/S0012-821X(02)01026-9
[32] 单鹏飞, 温晋林, 璩向宁. 贺兰山东麓新构造运动特征初探[J]. 干旱区地理, 1991,14(2):15-20.
Shan P F, Wen J L, Qu X N. An approach to the characteristics of neotectonic movement in the eastern foot of Helan Mountains[J]. Arid Land Geography, 1991,14(2):15-20.
[33] 杨桄, 刘湘南. 遥感影像解译的研究现状和发展趋势[J]. 国土资源遥感, 2004,16(2):7-10,15.doi: 10.6046/gtzyyg.2004.02.02.
Yang G, Liu X N. The present research condition and development trend of remotely sensed imagery interpretation[J]. Remote Sensing for Land and Resources, 2004,16(2):7-10,15.doi: 10.6046/gtzyyg.2004.02.02.
[34] Bull W B. The alluvial fan environment[J]. Progress in Physical Geography, 1977,1:222-270.
[35] Oguchi T, Ohmori H. Analysis of relationships among alluvial-fan area,source basin area,basin slope,and sediment yield[J]. Zeitschrift Fur Geomorphologie, 1994,38(4):405-420.
[1] 姚金玺, 张志, 张焜. 基于GEE的诺木洪洪积扇植被时空变化特征、成因及趋势分析[J]. 自然资源遥感, 2022, 34(1): 249-256.
[2] 江娜, 陈超, 韩海丰. 海岸带地类统计模型中DEM空间尺度优选方法[J]. 自然资源遥感, 2022, 34(1): 34-42.
[3] 安全, 贺中华, 赵翠薇, 梁虹, 焦树林, 杨朝晖. 基于地貌视角的喀斯特流域水系分维估算方法适应性分析[J]. 国土资源遥感, 2019, 31(4): 104-111.
[4] 蒋宗立, 张俊丽, 张震, 刘时银, 魏俊锋, 郭万钦, 祝传广, 黄丹妮. 1972—2011年东昆仑山木孜塔格峰冰川面积变化与物质平衡遥感监测[J]. 国土资源遥感, 2019, 31(4): 128-136.
[5] 马小奇, 卢善龙, 马津, 朱立平. 基于地形参数的湖泊水储量估算方法——以纳木错为例[J]. 国土资源遥感, 2019, 31(4): 167-173.
[6] 程滔, 李广泳, 毕凯. 顾及时点特征的水体提取成果空间修正方法[J]. 国土资源遥感, 2019, 31(2): 96-101.
[7] 王群, 范景辉, 周伟, 袁蔚林, 童立强, 郭兆成. DEM辅助偏移量跟踪技术的山地冰川运动监测研究[J]. 国土资源遥感, 2018, 30(3): 167-173.
[8] 虞舟鲁, 王文超, 戎奕, 沈掌泉. 基于子像元交换算法和地形数据的土地覆盖亚像元制图研究[J]. 国土资源遥感, 2017, 29(4): 88-97.
[9] 于海洋, 罗玲, 马慧慧, 李辉. SRTM(1″)DEM在流域水文分析中的适用性研究[J]. 国土资源遥感, 2017, 29(2): 138-143.
[10] 宿渊源, 张景发, 何仲太, 姜文亮, 蒋洪波, 李强. 资源卫星三号DEM数据在活动构造定量研究中的应用评价[J]. 国土资源遥感, 2015, 27(4): 122-130.
[11] 孙亚飞, 江利明, 柳林, 孙永玲, 汪汉胜. TanDEM-X双站SAR干涉测量及研究进展[J]. 国土资源遥感, 2015, 27(1): 16-22.
[12] 吴芳, 张宗贵, 郭兆成, 安志宏, 于坤, 李婷. 基于机载LiDAR点云滤波的矿区DEM构建方法[J]. 国土资源遥感, 2015, 27(1): 62-67.
[13] 张延冰, 郭华东, 韩春明. 利用机载双天线InSAR数据生成高精度DEM的试验研究——以大面积丘陵地区为例[J]. 国土资源遥感, 2014, 26(1): 97-102.
[14] 李光辉, 王成, 习晓环, 郑照军, 骆社周, 岳彩荣. 机载LiDAR和高光谱数据融合提取冰川雪线[J]. 国土资源遥感, 2013, 25(3): 79-84.
[15] 李曼, 夏耶, 葛大庆, 张玲, 范景辉, 王艳. 基于精细DEM的InSAR大气相位改正试验研究[J]. 国土资源遥感, 2013, 25(2): 101-106.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发