Please wait a minute...
 
国土资源遥感  2018, Vol. 30 Issue (3): 167-173    DOI: 10.6046/gtzyyg.2018.03.23
     本期目录 | 过刊浏览 | 高级检索 |
DEM辅助偏移量跟踪技术的山地冰川运动监测研究
王群1, 范景辉2(), 周伟1, 袁蔚林2, 童立强2, 郭兆成2
1. 中国地质大学(北京)土地科学技术学院,北京 100083
2. 中国国土资源航空物探遥感中心,北京 100083
Research on the DEM-assisted offset tracking technique applied to glaciers movement monitoring
Qun WANG1, Jinghui FAN2(), Wei ZHOU1, Weilin YUAN2, Liqiang TONG2, Zhaocheng GUO2
1. School of Land Science and Technology, China University of Geosciences, Beijing 100083, China
2. China Aero Geophysical Survey and Remote Sensing Centre for Land and Resources, Beijing 100083, China
全文: PDF(9002 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

为改善传统偏移量跟踪技术获取山地冰川表面位移时受大空间基线和地形起伏影响较大的状况,研究了数字高程模型(digital elevation model,DEM)辅助的偏移量跟踪技术。以西藏自治区康马县和浪卡子县之间的卓莫拉日山系东段冰川区为例,选取2对不同空间基线长度的TerraSAR-X数据应用传统的和DEM辅助的偏移量跟踪技术进行处理,并对比非冰川区的2种偏移量提取结果; 针对2景入射角和成像范围有所差别的COSMO-SkyMed影像开展了DEM辅助的偏移量跟踪数据处理。结果表明,DEM辅助的偏移量跟踪技术不仅降低了空间基线和地形起伏引起的误差,而且还能应用于同一传感器不同波束模式的合成孔径雷达(synthetic aperture Radar,SAR)影像,扩大了SAR数据的使用范围。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王群
范景辉
周伟
袁蔚林
童立强
郭兆成
关键词 偏移量跟踪技术冰川表面运动大空间基线地形起伏外部DEMTerraSAR-XCOSMO-SkyMed    
Abstract

To improve the offset results influenced by large spatial baseline and topography when traditional offset tracking technique is applied to extracting mountain glaciers surface movement, the authors studied a DEM-assisted offset tracking technique. Two pairs of TerraSAR-X images with different baseline lengths which cover the eastern section of Chomo Lhari Mountains located in Kangmar and Nagarze County of Tibet were selected to test the traditional and external DEM-assisted offset tracking techniques in this paper. And the offset results of the two methods in ice-free region were comparatively studied. A pair of COSMO-SkyMed images acquired by different beam modes, with different incidences and covers, were selected and processed with DEM-assisted offset tracking technique. It is shown that the DEM-assisted offset tracking technique could obtain more reliable offset results than the traditional technique where the terrain is steep and the spatial baseline is large. The technique can also apply to SAR images which have different beam modes and can make more SAR data useful for glaciers surface movement monitoring.

Key wordsoffset tracking technique    glaciers surface movement    large spatial baseline    topographic effect    external DEM    TerraSAR-X    COSMO-SkyMed
收稿日期: 2017-01-04      出版日期: 2018-09-10
:  TP79  
基金资助:中国地质调查局地质调查项目“青藏冰川变化与冰湖溃决灾害遥感综合调查”(DD20160342);中欧“龙计划”四期项目“landslide identification, movement monitoring and risk assessment using advanced earth observation techniques”(32365)
通讯作者: 范景辉
作者简介: 王 群(1992-),男,硕士研究生,主要研究方向为InSAR技术应用与研究。Email: wangq0723@163.com。
引用本文:   
王群, 范景辉, 周伟, 袁蔚林, 童立强, 郭兆成. DEM辅助偏移量跟踪技术的山地冰川运动监测研究[J]. 国土资源遥感, 2018, 30(3): 167-173.
Qun WANG, Jinghui FAN, Wei ZHOU, Weilin YUAN, Liqiang TONG, Zhaocheng GUO. Research on the DEM-assisted offset tracking technique applied to glaciers movement monitoring. Remote Sensing for Land & Resources, 2018, 30(3): 167-173.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2018.03.23      或      https://www.gtzyyg.com/CN/Y2018/V30/I3/167
Fig.1  外部DEM辅助偏移量跟踪技术处理流程图
数据对 轨道号 时间基线/d 垂直基线/m
20160625/20160706 143/143 11 40.2
20160808/20160819 143/143 11 1 015.5
Tab.1  TerraSAR-X数据参数
数据对 时间基
线/d
垂直基
线/m
中心入射
角/(°)
Beam Mode
20160630/20160731 31 31.3 27.264 7/26.659 4 HI02/HI01
Tab.2  COSMO-SkyMed数据参数
Fig.2  研究区范围及TerraSAR-X数据、不同入射角COSMO-SkyMed数据覆盖范围
数据对 传统偏移量
跟踪技术
DEM辅助的偏
移量跟踪技术
方位向偏
移量RMSE
距离向偏
移量RMSE
方位向偏
移量RMSE
距离向偏
移量RMSE
20160625/20160706 0.047 0.074 0.041 0.036
20160808/20160819 0.109 1.988 0.093 0.089
Tab.3  TerraSAR-X数据传统和DEM辅助的偏移量跟踪技术非冰川区RMSE
Fig.3  20160625—20160706像对提取结果
Fig.4  20160808—20160819像对提取结果
Fig.5  20160630-20160731像对提取结果
数据对 方位向偏移量RMSE 距离向偏移量RMSE
20160630/20160731 0.062 0.051
Tab.4  不同入射角COSMO-SkyMed数据偏移量跟踪技术非冰川区均RMSE
[1] Zhou J M, Li Z, Guo W Q . Estimation and analysis of the surface velocity field of mountain glaciers in Muztag Ata using satellite SAR data[J]. Environmental Earth Sciences, 2014,71(8):3581-3592.
doi: 10.1007/s12665-013-2749-5
[2] 谢自楚, 刘潮海 . 冰川学导论[M]. 上海: 上海科学普及出版社, 2010: 17-18.
Xie Z C, Liu C H. Introduction to Glacier[M]. Shanghai: Shanghai Populao Science Press, 2010: 17-18.
[3] Bolch T, Buchroithner M F, Peters J , et al. Identification of glacier motion and potentially dangerous glacial lakes in the Mt.Everest region/Nepal using spaceborne imagery[J]. Natural Hazards and Earth System Sciences, 2008,8(6):1329-1340.
doi: 10.5194/nhess-8-1329-2008
[4] 郭兆成, 童立强, 周成灿 , 等. 基于遥感图像分析对金错冰川湖溃决泥石流事件的验证[J]. 国土资源遥感, 2016,28(1):152-158.doi: 10.6046/gtzyyg.2016.03.15.
doi: 10.6046/gtzyyg.2016.01.22
Guo Z C, Tong L Q, Zhou C C , et al. Verification of glacial lake outburst debris flow events in Jincuo Lake of Tibet based on remote sensing image analysis[J]. Remote Sensing for Land and Resources, 2016,28(1):152-158.doi: 10.6046/gtzyyg.2016.03.15.
[5] Kääb A . Combination of SRTM3 and repeat ASTER data for deriving alpine glacier flow velocities in the Bhutan Himalaya[J]. Remote Sensing of Environment, 2005,94(4):463-474.
doi: 10.1016/j.rse.2004.11.003
[6] 邢宇 . 青藏高原32年湿地对气候变化的空间响应[J]. 国土资源遥感, 2015,27(3):99-107.doi: 10.6046/gtzyyg.2015.03.17.
doi: 10.6046/gtzyyg.2015.03.17
Xing Y . Spatial responses of wetland change to climate in 32 years in Qinghai-Tibet Plateau[J]. Remote Sensing for Land and Resources, 2015,27(3):99-107.doi: 10.6046/gtzyyg.2015.03.17.
[7] 廖明生, 王腾 . 时间序列InSAR技术与应用[M]. 北京: 科学出版社, 2014: 1-2.
Liao M S, Wang T. Time Series InSAR Technology and Application[M]. Beijing: Science Press, 2014: 1-2.
[8] Huang L, Li Z . Comparison of SAR and optical data in deriving glacier velocity with feature tracking[J]. International Journal of Remote Sensing, 2011,32(10):2681-2698.
doi: 10.1080/01431161003720395
[9] Luckman A, Quincey D, Bevan S . The potential of satellite radar interferometry and feature tracking for monitoring flow rates of Himalayan glaciers[J]. Remote Sensing of Environment, 2007,111(2/3):172-181.
doi: 10.1016/j.rse.2007.05.019
[10] Strozzi T, Luckman A, Murray T , et al. Glacier motion estimation using SAR offset-tracking procedures[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002,40(11):2384-2391.
doi: 10.1109/TGRS.2002.805079
[11] Goldstein R M, Engelhardt H, Kamb B , et al. Satellite radar interferometry for monitoring ice sheet motion:Application to an antarctic ice stream[J]. Science, 1993,262(5139):1525-1530.
doi: 10.1126/science.262.5139.1525
[12] Bechor N B D, Zebker H A . Measuring two-dimensional movements using a single InSAR pair[J]. Geophysical Research Letters, 2006,33(16):L16311.
doi: 10.1029/2006GL026883
[13] 王思胜, 江利明, 孙永玲 , 等. 基于ALOS PALSAR数据的山地冰川流速估算方法比较——以喀喇昆仑地区斯克洋坎力冰川为例[J]. 国土资源遥感, 2016,28(2):54-61.doi: 10.6046/gtzyyg.2016.02.09.
doi: 10.6046/gtzyyg.2016.02.09
Wang S S, Jiang L M, Sun Y L , et al. Evaluation of methods for deriving mountain glacier velocities with ALOS PALSAR images:A case study of Skyang glacier in central Karakoram[J]. Remote Sensing for Land and Resources, 2016,28(2):54-61.doi: 10.6046/gtzyyg.2016.02.09.
[14] Riveros N, Euillades L, Euillades P , et al. Offset tracking procedure applied to high resolution SAR data on Viedma glacier,Patagonian Andes,Argentina[J]. Advances in Geosciences, 2013,35:7-13.
doi: 10.5194/adgeo-35-7-2013
[15] Strozzi T, Kouraev A, Wiesmann A , et al. Estimation of Arctic glacier motion with satellite L-band SAR data[J]. Remote Sensing of Environment, 2008,112(3):636-645.
doi: 10.1016/j.rse.2007.06.007
[16] Yan S Y, Liu G, Wang Y J , et al. Accurate determination of glacier surface velocity fields with a DEM-assisted pixel-tracking technique from SAR imagery[J]. Remote Sensing, 2015,7(8):10898-10916.
doi: 10.3390/rs70810898
[17] Yan S Y, Guo H D, Liu G , et al. Mountain glacier displacement estimation using a DEM-assisted offset tracking method with ALOS/PALSAR data[J]. Remote Sensing Letters, 2013,4(5):494-503.
doi: 10.1080/2150704X.2012.754561
[18] Yan S Y, Liu G, Wang Y J , et al. Glacier surface motion pattern in the Eastern part of West Kunlun Shan estimation using pixel-tracking with PALSAR imagery[J]. Environmental Earth Sciences, 2015,74(3):1871-1881.
doi: 10.1007/s12665-015-4645-7
[19] 邓方慧, 周春霞, 王泽民 , 等. 利用偏移量跟踪测定Amery冰架冰流汇合区的冰流速[J]. 武汉大学学报(信息科学版), 2015,40(7):901-906.
doi: 10.13203/j.whugis20130653
Deng F H, Zhou C X, Wang Z M , et al. Ice-flow velocity derivation of the confluence zone of the Amery ice shelf using offset-tracking method[J]. Geomatics and Information Science of Wuhan University, 2015,40(7):901-906.
[20] 郑茜, 孙建宝, 张永 . 基于Landsat-8时间序列影像分析西昆仑山地区冰川滑移特征[J]. 大地测量与地球动力学, 2016,36(7):604-608.
Zheng Q, Sun J B, Zhang Y . Fast and uniformly slipping Western-Kunlun glaciers from time-series deformation analysis using periodically captured Landsat-8 imagery[J]. Journal of Geodesy and Geodynamics, 2016,36(7):604-608.
[21] 闫世勇 . 山地冰川表面运动雷达遥感监测方法研究[D]. 北京:中国科学院大学, 2013: 53-55.
Yan S Y . Research on Extraction of Alpine Glacier Surface Movement by SAR Remote Sensing[D]. Beijing:University of Chinese Academy of Sciences, 2013: 53-55.
[22] Sansosti E, Berardino P, Manunta M , et al. Geometrical SAR image registration[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006,44(10):2861-2870.
doi: 10.1109/TGRS.2006.875787
[23] GAMMA Remote Sensing . Differential Interferometry and Geocoding Software-DIFF&GEO(Geocoding and Image Registration)[R]. Switzerland:GAMMA Remote Sensing AG, 2008.
[24] 戎丹雅, 吴秀山, 冉启华 , 等. 冰湖溃决洪水演进模拟[J]. 水土保持, 2014,2(3):29-36.
doi: 10.12677/ojswc.2014.23003
Rong D Y, Wu X S, Ran Q H , et al. Evolution simulation of glacial lake outburst flood[J]. Open Journal of Soil and Water Conservation, 2014,2(3):29-36.
[25] 刘春玲, 童立强, 祁生文 , 等. 喜马拉雅山地区冰川湖溃决灾害隐患遥感调查及影响因素分析[J]. 国土资源遥感, 2016,28(3):110-115.doi: 10.6046/gtzyyg.2016.03.18.
doi: 10.6046/gtzyyg.2016.03.18
Liu C L, Tong L Q, Qi S W , et al. Remote sensing investigation and influence factor analysis of glacier lake outburst potential in the Himalayas[J]. Remote Sensing for Land and Resources, 2016,28(3):110-115.doi: 10.6046/gtzyyg.2016.03.18.
[26] 倪维平, 边辉, 严卫东 , 等. TerraSAR-X雷达卫星的系统特性与应用分析[J]. 雷达科学与技术, 2009,7(1):29-34,58.
Ni W P, Bian H, Yan W D , et al. System characteristics and application analysis of TerraSAR-X Radar satellite[J]. Radar Science and Technology, 2009,7(1):29-34,58.
[27] Italian Space Agency.COSMO-SkyMed Mission and Products Description[EB/OL].[ 2016- 05- 31]. .
[28] USGS Earth Resource Observation and Science(EROS) Center.Global Data Explorer(GDEx) Data Access User Guide[EB/OL].[2016-04]..
[1] 贺鹏, 童立强, 郭兆成, 涂杰楠, 王根厚. 基于地形起伏度的冰湖溃决隐患研究——以希夏邦马峰东部为例[J]. 自然资源遥感, 2022, 34(1): 257-264.
[2] 于冰, 谭青雪, 刘国祥, 刘福臻, 周志伟, 何智勇. 高分辨率TerraSAR-X时序差分干涉沉降监测及精度验证[J]. 自然资源遥感, 2021, 33(4): 26-33.
[3] 丁荣荣, 徐佳, 林晓彬, 许康. 基于高分辨率TerraSAR-X影像的PSInSAR地表形变监测[J]. 国土资源遥感, 2015, 27(4): 158-164.
[4] 赵兴刚, 柳林, 钱静. 基于TerraSAR-X全极化数据的北极地区海冰信息提取[J]. 国土资源遥感, 2014, 26(3): 130-134.
[5] 张微, 姚琪, 杨金中, 于浩, 吴建勇. 龙门山断裂带晚新生代以来分段活动的地形地貌表现[J]. 国土资源遥感, 2013, 25(4): 113-121.
[6] 栗敏光, 李英成, 薛艳丽, 叶冬梅. 多源多时相遥感数据面向对象海岛识别方法探讨[J]. 国土资源遥感, 2010, 22(1): 65-68.
[7] 卫征, 刘学, 张兵. 地形因素对航空面阵CCD影像的影响分析与评价[J]. 国土资源遥感, 2008, 20(1): 27-30.
[8] 张会平, 刘少峰, 孙亚平, 陈永生.  基于SRTM-DEM区域地形起伏的获取及应用[J]. 国土资源遥感, 2006, 18(1): 31-35.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发