Please wait a minute...
 
自然资源遥感  2022, Vol. 34 Issue (4): 307-316    DOI: 10.6046/zrzyyg.2021360
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
机载LiDAR技术在缓倾地层滑坡及其拉裂槽识别中的应用
贺鹏1,2(), 颜瑜严3, 文艳3, 马志刚3, 焦其松4, 郭兆成2(), 莫悠2
1.中国地质大学(北京)地球科学与资源学院,北京 100083
2.中国自然资源航空物探遥感中心,北京 100083
3.四川省国土空间生态修复与地质灾害防治研究院,成都 610081
4.国家自然灾害防治研究院,北京 100085
Application of the airborne LiDAR technology in the identification of flat landslides and their crack grooves
HE Peng1,2(), YAN Yuyan3, WEN Yan3, MA Zhigang3, JIAO Qisong4, GUO Zhaocheng2(), MO You2
1. School of Earth Sciences and Resources,China University of Geosciences(Beijing), Beijing 100083, China
2. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China
3. Sichuan Institute of Land and Space Ecological Restoration and Geological Disaster Prevention, Chengdu 610081, China
4. National Institute of Natural Disaster Prevention and Control, Beijing 100085, China
全文: PDF(11725 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

缓倾地层滑坡是我国西南地区常见的一种特殊灾害类型,拉裂槽为其典型识别标志。由于灾害源区植被茂密、地形复杂,常规地面调查或遥感手段均存在局限性,较难高效、有效地对其进行识别提取。作为新兴遥感技术之一的机载激光雷达(light detection and ranging, LiDAR)技术及其数据可视化分析方法为缓倾地层滑坡的准确识别提供了新的解决方案。利用无人机搭载长测程LiDAR可获取高分辨率数字高程模型,结合空天视域因子、系列山体阴影图和三维形态模拟等多种可视化方法,可实现缓倾地层滑坡及其拉裂槽的有效识别。文章以四川省北部通江县春在镇周边作为研究区,选取糯鼓寨村南部新识别滑坡隐患作为典型案例,利用综合遥感识别方法,实现基于机载LiDAR数据的滑坡隐患识别标志构建、边界准确判识、拉裂槽位置识别及信息提取,结合野外核查验证结果,从定性和定量2个方面验证机载LiDAR技术对高植被区缓倾地层滑坡及其拉裂槽识别应用的有效性。相关研究结果对缓倾地层滑坡多发区的灾害隐患早期识别、监测及防治领域应用研究具一定的参考和借鉴价值。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
贺鹏
颜瑜严
文艳
马志刚
焦其松
郭兆成
莫悠
关键词 缓倾地层滑坡拉裂槽机载激光雷达高分辨率数字高程模型可视化分析    
Abstract

Flat landslides, typically characterized by crack grooves, are a common type of special disasters in southwestern China. However, the dense vegetation and complex terrain in disaster-developed areas limit the efficiency of conventional ground or remote sensing (RS) survey methods in the identification and extraction of disaster information. As one of the emerging remote sensing technologies, the airborne LiDAR technology and its data visualization analysis methods provide a new solution for the accurate identification of flat landslides. First, the high resolution digital elevation model (HRDEM) can be obtained using the UAV airborne LiDAR. Then, the HRDEM can be combined with visualization methods including sky view factor (SVF), hillshades, and 3D morphology simulation for the effective identification of flat landslides and their crack grooves. This study investigated the newly identified landslide hazard in the southern part of Nuoguzhai Village, Chunzai Town, Tongjiang County, northern Sichuan Province. The comprehensive RS identification method was used to realize the construction of landslide identification signs, the determination of the landslide boundary, the identification of crack groove position, and information extraction based on airborne LiDAR data. Combined with the results of field surveys, the effectiveness of the airborne LiDAR technology for the identification of flat landslides and their crack grooves in highly vegetation-covered areas was verified from both qualitative and quantitative aspects. The related study results can be used as a reference for the early identification, monitoring, and prevention of flat landslides.

Key wordsflat landslides    crack groove    airborne LiDAR    HRDEM    visual analysis
收稿日期: 2021-11-01      出版日期: 2022-12-27
ZTFLH:  P694  
基金资助:四川省自然资源厅地质灾害调查项目“四川省地质灾害隐患遥感识别监测(2021年)”(510201202110324);“四川省地质灾害隐患遥感识别监测(2020年)”(510201202076888)
通讯作者: 郭兆成(1979-),男,博士,教授级高级工程师,主要从事地质灾害遥感研究工作。Email: guozc@agrs.cn
作者简介: 贺 鹏(1986-),男,博士,工程师,主要从事环境地质、地质灾害遥感研究工作。Email: hepeng@mail.cgs.gov.cn
引用本文:   
贺鹏, 颜瑜严, 文艳, 马志刚, 焦其松, 郭兆成, 莫悠. 机载LiDAR技术在缓倾地层滑坡及其拉裂槽识别中的应用[J]. 自然资源遥感, 2022, 34(4): 307-316.
HE Peng, YAN Yuyan, WEN Yan, MA Zhigang, JIAO Qisong, GUO Zhaocheng, MO You. Application of the airborne LiDAR technology in the identification of flat landslides and their crack grooves. Remote Sensing for Natural Resources, 2022, 34(4): 307-316.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2021360      或      https://www.gtzyyg.com/CN/Y2022/V34/I4/307
Fig.1  研究区位置及遥感影像
点云类型 点密度/
(pts·m-2)
水平分
辨率/m
垂直分
辨率/m
最大高
差/m
原始点 45 0.16 0.18 221.26
非地面点 42 0.16 0.18 191.29
地面点 15 0.24 0.20 179.99
Tab.1  点云参数对比
Fig.2  机载LiDAR激光点云及产品
Fig.3  缓倾地层滑坡综合遥感识别标志
Fig.4  SVF可视化方法对缓倾地层滑坡边界的识别及结果
Fig.5  滑坡拉裂槽系列山体阴影图及识别结果
Fig.6  滑坡拉裂槽三维形态特征
Fig.7  实地调查复核点位示意图
Fig.8  糯鼓寨村滑坡拉裂槽实地调查照片
Fig.9  滑坡中部被破坏房屋及地面照片
Fig.10  滑坡右侧壁中部被破坏设施照片
Fig.11  滑坡左侧壁中下部拉裂缝照片
[1] 王治华, 杜明亮, 郭兆成, 等. 缓倾地层滑坡地质力学模型研究——以冯店滑坡为例[J]. 地质力学学报, 2012, 18(2):97-109,186.
Wang Z H, Du M L, Guo Z C, et al. Molybdenite re-os isotopic dating of sangbujiala copper deposit in the south margin of the eastern Gangdese section,Tibet,and its geological implications[J]. Journal of Geomechanics, 2012, 18(2):97-109,186.
[2] 方贻立, 马明, 李聪, 等. 平推式滑坡致灾机理与减灾方法研究进展[J]. 长江科学院院报, 2013, 30(12):20-27.
Fang Y L, Ma M, Li C, et al. Research advances in translational landslide’s mechanism and risk mitigation[J]. Journal of Yangtze River Scientific Research Institute, 2013, 30(12):20-27.
[3] 张明, 胡瑞林, 殷跃平, 等. 川东缓倾红层中降雨诱发型滑坡机制研究[J]. 岩石力学与工程学报, 2014, 33(s2):3783-3790.
Zhang M, Hu R L, Yin Y P, et al. Study of mechanism of landslide induced by rainfall in gently inclined red stratum in east Sichuan basin[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(s2):3783-3790.
[4] 张倬元, 王士天, 王兰生. 工程地质分析原理[M]. 北京: 地质出版社, 1994:377-380.
Zhang Z Y, Wang S T, Wang L S. Principles of engineering geological analysis[M]. Beijing: Geological Publishing House, 1994:377-380.
[5] 吉随旺, 张倬元, 王凌云, 等. 近水平软硬互层斜坡变形破坏机制[J]. 中国地质灾害与防治学报, 2000(3):52-55.
Ji S W, Zhang Z Y, Wang L Y, et al. The mechanism of deformation and failure for the slope composed of nearly horizontal competent and incompetent intercalated rock mass strata[J]. Chinese Journal of Geological Hazards and Prevention, 2000(3):52-55.
[6] 黄润秋, 赵松江, 宋肖冰, 等. 四川省宣汉县天台乡滑坡形成过程和机理分析[J]. 水文地质工程地质, 2005(1):13-15.
Huang R Q, Zhao S J, Song X B, et al. The formation and mechanism analysis of Tiantai landslide,Xuanhan County,Sichuan Province[J]. Hydrogeology and Engineering Geology, 2005(1):13-15.
[7] 成国文, 李善涛, 李晓, 等. 万州近水平地层区堆积层滑坡成因与变形破坏特征[J]. 工程地质学报, 2008(3):17-23.
Cheng G W, Li S T, Li X, et al. Forming causes and deformation-destruction characters of accumulative stratum landslide in horizontal stratum in Wanzhou[J]. Hydrogeology and Engineering Geology, 2008(3):17-23.
[8] Du Y, Xie M W, Jia J L. Stepped settlement: A possible mechanism for translational landslides[J]. Catena, 2020, 187:104365.
doi: 10.1016/j.catena.2019.104365
[9] 杜岩, 谢谟文, 吴志祥, 等. 平推式滑坡成因机制及其稳定性评价[J]. 岩石力学与工程学报, 2019, 38(s1):2871-2880.
Du Y, Xie M W, Wu Z X, et al. Genetic mechanism about translational landslide and its safety evaluation[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(s1):2871-2880.
[10] Juan J S, Xue L,Wang, H Y, et al. Effects of the attitude of dominant joints on the mobility of translational landslides[J]. Landslides, 2021, 18:2483-2498.
doi: 10.1007/s10346-021-01668-8
[11] Santangelo M, Cardinali M, Rossi M, et al. Remote landslide mapping using a laser rangefinder binocular and GPS[J]. Natural Hazards and Earth System Sciences, 2010, 10(12): 2539-2546.
[12] 许强, 董秀军, 李为乐. 基于天-空-地一体化的重大地质灾害隐患早期识别与监测预警[J]. 武汉大学学报(信息科学版), 2019, 44(7):957-966.
Xu Q, Dong X J, Li W L. Integrated space-air-ground early detection,monitoring and warning system for potential catastrophic geohazards[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7):957-966.
[13] 许强, 李为乐, 董秀军, 等. 四川茂县叠溪镇新磨村滑坡特征与成因机制初步研究[J]. 岩石力学与工程学报, 2017, 36(11):2612-2628.
Xu Q, Li W L, Dong X J, et al. The Xinmocun landslide on June 24,2017 in Maoxian,Sichuan: Characteristics and failure mechanism[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(11):2612-2628.
[14] IPCC. Climate change 2021:The physical science basis[M]. Cambridge: Cambridge University Press, 2021: 5-31.
[15] 张小红. 机载激光雷达测量技术理论与方法[M]. 武汉: 武汉大学出版社, 2007: 16-25.
Zhang X H. Airborne laser Radar technology theory and methods of measurement[M]. Wuhan: Wuhan University Press, 2007:16-25.
[16] McKean J, Roering J. Objective landslide detection and surface morphology mapping using high-resolution airborne laser altimetry[J]. Geomorphology, 2004, 57(3-4): 331-351.
doi: 10.1016/S0169-555X(03)00164-8
[17] Michel J, Thierry O, Antonio A, et al. Use of LIDAR in landslide investigations:A review[J]. Natural Hazards, 2012, 61(1):5-28.
doi: 10.1007/s11069-010-9634-2
[18] 马晓雪, 吴中海, 李家存. LiDAR技术在地质环境中的主要应用与展望[J]. 地质力学学报, 2016, 22(1):93-103.
Ma X X, Wu Z H, Li J C. LiDAR technology and its application and prospect in geological environment[J]. Journal of Geomechanics, 2016, 22(1):93-103.
[19] 任治坤, 陈涛, 张会平, 等. LiDAR技术在活动构造研究中的应用[J]. 地质学报, 2014, 88(6):1196-1207.
Ren Z K, Chen T, Zhang H P, et al. LiDAR survey in active tectonics studies:An introduction and overview[J]. Acta Geologica Sinica, 2014, 88(6):1196-1207.
[20] 李占飞, 刘静, 邵延秀, 等. 基于LiDAR的海原断裂松山段断错地貌分析与古地震探槽选址实例[J]. 地质通报, 2016, 35(1):104-116.
Li Z F, Liu J, Shao Y X, et al. Tecto-geomorphic analysis and selection of trench sites along Haiyuan fault in Songshan site based on high-resolution airbone LiDAR data[J]. Geological Bulletin of China, 2016, 35(1):104-116.
[21] 肖春蕾, 郭兆成, 郑雄伟, 等. 机载LiDAR技术在地质调查领域中的几个典型应用[J]. 国土资源遥感, 2016, 28(1):136-143.doi:10.6046/gtzyyg.2016.01.20.
doi: 10.6046/gtzyyg.2016.01.20
Xiao C L, Guo Z C, Zheng X W, et al. Typical applications of airborne LiDAR technique in geological investigation[J]. Remote Sensing for Land and Resources, 2016, 28(1):136-143.doi:10.6046/gtzyyg.2016.01.20.
doi: 10.6046/gtzyyg.2016.01.20
[22] 郭晨, 许强, 董秀军, 等. 复杂山区地质灾害机载激光雷达识别研究[J]. 武汉大学学报(信息科学版), 2021, 46(10):1538-1547.
Guo C, Xu Q, Dong X J, et al. Geohazard recognition by airborne LiDAR technology in complex mountain areas[J]. Geomatics and Information Science of Wuhan University, 2021, 46(10):1538-1547.
[23] 沈开俊, 刘严松. 四川通江县地质灾害特征及影响因素分析[J]. 四川地质学报, 2010, 30(4):465-467,481.
Shen K J, Liu Y S. Geological hazards and their influence factors in Tongjiang,Sichuan[J]. Acta Geologica Sichuan, 2010, 30(4):465-467,481.
[24] 张涛, 谢忠胜, 石胜伟, 等. 川东红层缓倾岩质滑坡的演化过程及其识别标志探讨[J]. 工程地质学报, 2017, 25(2):496-503.
Zhang T, Xie Z S, Shi S W, et al. Discussion on evolution process of flat rock landslide and its identification in red strata at eastern Sichuan[J]. Journal of Engineering Geology, 2017, 25(2):496-503.
[1] 孟琮棠, 赵银娣, 韩文泉, 何晨阳, 陈锡秋. 基于RandLA-Net的机载激光雷达点云城市建筑物变化检测[J]. 自然资源遥感, 2022, 34(4): 113-121.
[2] 吴芳, 李瑜, 金鼎坚, 李天祺, 郭华, 张琦洁. 无人机三维地障信息提取技术应用于航空物探飞行轨迹规划[J]. 自然资源遥感, 2022, 34(1): 286-292.
[3] 吴芳, 金鼎坚, 张宗贵, 冀欣阳, 李天祺, 高宇. 基于CZMIL测深技术的海陆一体地形测量初探[J]. 自然资源遥感, 2021, 33(4): 173-180.
[4] 李奇, 王建超, 韩亚超, 高子弘, 张永军, 金鼎坚. 基于CZMIL Nova的中国海岸带机载激光雷达测深潜力分析[J]. 国土资源遥感, 2020, 32(1): 184-190.
[5] 杜磊, 陈洁, 李敏敏, 郑雄伟, 李京, 高子弘. 机载激光雷达技术在滑坡调查中的应用——以三峡库区张家湾滑坡为例[J]. 国土资源遥感, 2019, 31(1): 180-186.
[6] 成晓倩, 樊良新, 赵红强. 基于图像分割技术的城区机载LiDAR数据滤波方法[J]. 国土资源遥感, 2012, 24(3): 29-32.
[7] 王圣尧, 刘圣伟, 崔希民, 郭大海, 郑雄伟, 鲁潇. 机载激光雷达航带平差实验研究 ——基于参数模型和地面控制点数据[J]. 国土资源遥感, 2012, 24(2): 19-22.
[8] 徐宏根, 王建超, 郑雄伟, 吴芳, 李迁. 面向对象的植被与建筑物重叠区域的点云分类方法[J]. 国土资源遥感, 2012, 24(2): 23-27.
[9] 张峰, 薛艳丽, 李英成, 丁晓波. 基于SVM的多源遥感影像面向对象建筑物提取方法[J]. 国土资源遥感, 2008, 20(2): 27-29.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发