Please wait a minute...
 
自然资源遥感  2022, Vol. 34 Issue (4): 216-224    DOI: 10.6046/zrzyyg.2021389
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
新疆干旱时空动态及其对气候变化的响应
程军1(), 李云祯2, 邹渝3
1.渭南师范学院环境与生命科学学院,渭南 714099
2.四川大学水利水电学院,成都 610065
3.四川省生态环境科学研究院,成都 610041
Spatial and temporal dynamics of drought in Xinjiang and its response to climate change
CHENG Jun1(), LI Yunzhen2, ZOU Yu3
1. College of Environment and Life Sciences, Weinan Normal University, Weinan 714099, China
2. School of Water Resources and Hydropower, Sichuan University, Chengdu 610065, China
3. Sichuan Academy of Ecological and Environmental Sciences, Chengdu 610041, China
全文: PDF(6147 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

为实现对新疆地区旱情的动态连续监测,基于温度植被干旱指数(temperature vegetation dryness index, TVDI),辅以Sen斜率法、重标极差法及偏相关分析法探究了新疆2001—2020年TVDI时空动态、变化趋势、未来持续状态及季节性降水、气温对TVDI的影响。结果表明: ①TVDI最小值出现在天山山脉以北及昆仑山脉地区,TVDI值在0.57以下,属轻旱等级,塔里木盆地和准噶尔盆地TVDI在0.86以上,属特旱等级; ②春季TVDI呈减小趋势,减小速率为0.001 3/a,夏季TVDI增加速率为0.001 4/a,秋季TVDI增加速率最大(增加速率为0.002 0/a),冬季TVDI增加速率最小(增加速率为0.000 8/a); ③春、冬季未来一段时间内大部分区域TVDI将呈增加趋势,夏、秋季TVDI将在未来一段时间内大部分像元呈减小趋势; ④春、冬季TVDI与降水以负相关为主,夏、秋季TVDI与降水以正相关为主,春季TVDI与气温以正相关为主,夏季TVDI与气温的相关性从西向东递减,相关性从负相关逐渐变成正相关,秋、冬季TVDI与气温以负相关为主。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
程军
李云祯
邹渝
关键词 TVDI气温降水新疆    
Abstract

This study aims to achieve the dynamic and continuous monitoring of drought in Xinjiang. Based on the temperature vegetation dryness index (TVDI), as well as the Sen’s slope trend analysis, R/S, and partial correlation analysis, this study analyzed the spatial and temporal dynamics, changing trends, and future sustainable state of TVDI and the influences of seasonal precipitation and temperature on TVDI in Xinjiang during the period from 2001 to 2020. The results are as follows. ① The northern Tianshan Mountains and the Kunlun Mountains showed minimum TVDI values of less than 0.57, indicating light drought. The Tarim and Junggar basins showed TVDI values of greater than 0.86, indicating extraordinary drought. ② The TVDI values in spring decreased at a rate of 0.001 3/a. By contrast, the TVDI values in summer, autumn, and winter increased at a rate of 0.001 4/a, 0.002 0/a, and 0.000 8/a, respectively. Therefore, the increased amplitude of the TVDI values was the highest in autumn and the lowest in winter. ③ In the near future, the TVDI values in most regions of Xinjiang will increase in spring and winter, while the pixel quantity of most TVDI values will increase in summer and autumn. ④ The TVDI values were mainly negatively correlated with precipitation in spring and winter and were positively correlated with precipitation in summer and autumn. The TVDI values were mainly positively correlated with temperature in spring and were negatively correlated with temperature in autumn and winter. Moreover, the TVDI values in summer had a decreased correlation with temperature from west to east, with the correlation gradually changing from a negative to a positive correlation.

Key wordsTVDI    temperature    precipitation    Xinjiang
收稿日期: 2021-11-16      出版日期: 2022-12-27
ZTFLH:  TP79  
基金资助:国家自然科学基金项目“川西南山区山洪灾害临界雨量及相应洪峰研究”(51879172)
作者简介: 程 军(1971-),男,硕士,讲师,研究方向为地图制图与地理信息。Email: liyunzhen2020@163.com
引用本文:   
程军, 李云祯, 邹渝. 新疆干旱时空动态及其对气候变化的响应[J]. 自然资源遥感, 2022, 34(4): 216-224.
CHENG Jun, LI Yunzhen, ZOU Yu. Spatial and temporal dynamics of drought in Xinjiang and its response to climate change. Remote Sensing for Natural Resources, 2022, 34(4): 216-224.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2021389      或      https://www.gtzyyg.com/CN/Y2022/V34/I4/216
Fig.1  研究区土地利用类型和海拔及气象站点空间分布
注: 基于国家测绘地理信息局标准地图服务网站下载的审图号为GS(2016) 1549号的标准地图制作,底图无修改。
Fig.2  地表温度站点实测数据与校正前后LST结果比较
Fig.3  TVDI的年际变化趋势
Fig.4  TVDI空间分布
Fig.5  TVDI变化趋势
Fig.6  不同土地利用类型TVDI变化趋势统计
Fig.7  TVDI的Hurst指数空间分布
Fig.8  TVDI与季节性气温和的降水偏相关系数分布
Fig.9  不同土地利用类型TVDI与季节性降水和气温的相关系数
[1] 吴燕锋, 巴特尔·巴克, 罗那那. 1961—2012年北疆干旱时空变化[J]. 中国沙漠, 2017, 37(1):158-166.
Wu Y F, Bake B, Luo N N. Spatiotemporal pattern of drought in north Xinjiang,China in 1961—2012[J]. Journal of Desert Research, 2017, 37(1):158-166.
[2] 李江. 新形势下新疆重大水利工程科技需求与展望[J]. 水利水电技术, 2019, 50(12):1-9.
Li J. Scientific and technical demands and prospects of major water conservancy projects in Xinjiang under new circumstances[J]. Water Resources and Hydropower Engineering, 2019, 50(12):1-9.
[3] 魏林, 龙鸿艳. 新疆喀什干旱区实施新一轮退耕还草问题探讨[J]. 草食家畜, 2020(2):46-48.
Wei L, Long H Y. Discussion on the problems existing in implementation of the new round of returning farmland to grassland in arid region of Kashgar Xinjiang[J]. Grass-Feeding Livestock, 2020(2):46-48.
[4] 杨涛, 陆桂华, 李会会, 等. 气候变化下水文极端事件变化预测研究进展[J]. 水科学进展, 2011, 22(2):279-286.
Yang T, Lu G H, Li H H, et al. Advances in the study of projection of climate change impacts on hydrological extremes[J]. Advances in Water Science, 2011, 22(2):279-286.
[5] 秦大河, 丁一汇, 王绍武, 等. 中国西部生态环境变化与对策建议[J]. 地球科学进展, 2002, 17(3):314-319.
doi: 10.11867/j.issn.1001-8166.2002.03.0314
Qin D H, Ding Y H, Wang S W, et al. Ecological and environmental change in West China and its response strategy[J]. Advance in Earth Sciences, 2002, 17(3):314-319.
[6] 姚玉璧, 张强, 李耀辉, 等. 干旱灾害风险评估技术及其科学问题与展望[J]. 资源科学, 2013, 35(9):1884-1897.
Yao Y B, Zhang Q, Li Y H, et al. Drought risk assessment technological progresses and problems[J]. Resources Science, 2013, 35(9):1884-1897.
[7] 谢培, 顾艳玲, 张玉虎, 等. 1961—2015年新疆降水及干旱特征分析[J]. 干旱区地理, 2017, 40(2):332-339.
Xie P, Gu Y L, Zhang Y H, et al. Precipitation and drought characteristics in Xinjiang during 1961—2015[J]. Arid Land Geography, 2017, 40(2):332-339.
[8] 高瑜莲, 柳锦宝, 柳维扬, 等. 近14 a新疆南疆绿洲地区地表蒸散与干旱的时空变化特征研究[J]. 干旱区地理, 2019, 42(4):830-837.
Gao Y L, Liu J B, Liu W Y, et al. Spatio-temporal variation characteristics of surface evapotranspiration and drought at the oasis area of the southern Xinjiang in recent 14 years[J]. Arid Land Geo-graphy, 2019, 42(4):830-837.
[9] 彭擎, 王让会, 蒋烨林, 等. 植被-地温指数(NDVI-LST)在新疆干旱监测中的适用性[J]. 生态学报, 2018, 38(13):4694-4703.
Peng Q, Wang R H, Jiang Y L, et al. Adaptability of drought situation monitor in Xinjiang with the NDVI-LST index[J]. Acta Ecologica Sinica, 2018, 38(13):4694-4703.
[10] 张喆, 丁建丽, 李鑫, 等. TVDI用于干旱区农业旱情监测的适宜性[J]. 中国沙漠, 2015, 35(1):220-227.
Zhang Z, Ding J L, Li X, et al. Suitability of TVDI used to monitor agricultural drought in arid area[J]. Journal of Desert Research, 2015, 35(1):220-227.
[11] 黄静, 张运, 汪明秀, 等. 近17年新疆干旱时空分布特征及影响因素[J]. 生态学报, 2020, 40(3):1077-1088.
Huang J, Zhang Y, Wang M X, et al. Spatial and temporal distribution characteristics of drought and its relationship with meteorological factors in Xinjiang in last 17 years[J]. Acta Ecologica Sinica, 2020, 40(3):1077-1088.
[12] 姚俊强, 毛炜峄, 胡文峰, 等. 1961—2015年新疆区域SPEI干旱指数数据集[J]. 中国科学数据(中英文网络版), 2019, 4(3):112-121.
Yao J Q, Mao W Y, Hu W F, et al. A dataset of drought indices based on the standardized precipitation evapotranspiration index (SPEI) over Xinjiang,China (1961—2015)[J]. China Scientific Data, 2019, 4(3):112-121.
[13] 马柱国, 符淙斌, 杨庆, 等. 关于我国北方干旱化及其转折性变化[J]. 大气科学, 2018, 42(4):248-258.
Ma Z G, Fu C B, Yang Q, et al. Drying trend in northern China and its shift during 1951—2016[J]. Chinese Journal of Atmospheric Sciences, 2018, 42(4):248-258.
[14] Yao J, Zhao Y, Yu X. Spatial-temporal variation and impacts of drought in Xinjiang (Northwest China) during 1961—2015[J]. PeerJ, 2018, 6:e4926.
doi: 10.7717/peerj.4926
[15] Xie P, Lei X, Zhang Y, et al. Cluster analysis of drought variation and its mutation characteristics in Xinjiang Province,during 1961—2015[J]. Hydrology Research, 2018, 49(4):1016-1027.
doi: 10.2166/nh.2018.105
[16] Ma Y J, Shi F Z, Hu X, et al. Threshold vegetation greenness under water balance in different desert areas over the silk road economic belt[J]. Remote Sensing, 2020, 12(15):2452.
doi: 10.3390/rs12152452
[17] 施雅风, 沈永平, 胡汝骥. 西北气候由暖干向暖湿转型的信号、影响和前景初步探讨[J]. 冰川冻土, 2002, 24(3):219-226.
Shi Y F, Shen Y P, Hu R J. Preliminary study on signal,impact and foreground of climatic shift from warm-dry to warm-humid in Northwest China[J]. Journal of Glaciology and Geocryology, 2002, 24(3):219-226.
[18] 鞠彬, 曾明, 徐国梁. 不同干旱指数在新疆哈巴河地区旱情评价中的应用研究[J]. 水资源与水工程学报, 2017, 28(2):237-243.
Ju B, Zeng M, Xu G L. Application research of different drought indexes for drought assessment in Habahe region of Xinjiang[J]. Journal of Water Resources and Water Engineering, 2017, 28(2):237-243.
[19] 轩俊伟, 郑江华, 刘志辉. 基于SPEI的新疆干旱时空变化特征[J]. 干旱区研究, 2016, 33(2):338-344.
Xuan J W, Zheng J H, Liu Z H. SPEI-based spatiotemporal variation of drought in Xinjiang[J]. Arid Zone Research, 2016, 33(2):338-344.
[20] 刘星含, 张佳华, 许晓宏. MODIS-TVDI指数监测新疆干旱动态[J]. 遥感信息, 2015(2):111-115.
Liu X H, Zhang J H, Xu X H. Drought monitoring in Xinjiang by using MODIS-TVDI[J]. Remote Sensing Information, 2015(2):111-115.
[21] 郭燕云, 胡琦, 傅玮东, 等. 基于SPEI指数的新疆天山草地近55 a干旱特征[J]. 干旱区研究, 2019, 36(3):670-676.
Guo Y Y, Hu Q, Fu W D, et al. Drought trend over the grasslands in the Tianshan Mountains,Xinjiang in recent 55 years based on SPEI[J]. Arid Zone Research, 2019, 36(3):670-676.
[22] 沙莎, 郭铌, 李耀辉, 等. 我国温度植被旱情指数TVDI的应用现状及问题简述[J]. 干旱气象, 2014, 32(1):128-134.
doi: 10.11755/j.issn.1006-7639(2014)-01-0128
Sha S, Guo N, Li Y H, et al. Introduction of application of temperature vegetation dryness index in China[J]. Journal of Arid Meteoro-logy, 2014, 32(1):128-134.
[23] Price J C. On the analysis of thermal infrared imagery:The limited utility of apparent inertia[J]. Remote Sensing of Environment, 1985, 18(1):59-47.
doi: 10.1016/0034-4257(85)90038-0
[24] Sandholt I, Rasmussen K, Andersen J. A simple interpretation of surface temperature / vegetation index space for assessment of surface moisture status[J]. Remote Sensing of Environment, 2002, 79(2-3):213-224.
doi: 10.1016/S0034-4257(01)00274-7
[25] Moran M S, Hymer D C, Qi J. Soil moisture evolution using multi-temporal synthetic aperture Radar SAR in semiarid rangeland[J]. Agricultural and Forest Meteorology, 2000, 105(1-3):69-80.
doi: 10.1016/S0168-1923(00)00189-1
[26] 汪攀, 刘毅敏. Sen’s斜率估计与Mann-Kendall法在设备运行趋势分析中的应用[J]. 武汉科技大学学报, 2014, 37(6):454-457,472.
Wang P, Liu Y M. Application of Sen’s slope estimation and Mann-Kendall method in the trend analysis of equipment operation[J]. Journal of Wuhan University of Science and Technology, 2014, 37(6):454-457,472.
[27] 姜丽霞, 王晾晾, 吕佳佳, 等. 基于Hurst指数的黑龙江省作物生长季降水趋势研究[J]. 气象与环境学报, 2020, 36(2):70-77.
Jiang L X, Wang L L, Lyu J J, et al. A study on rainfall trend during the crop growing season in Heilongjiang Province based on Hurst exponent method[J]. Journal of Meteorology and Environment, 2020, 36(2):70-77.
[28] 吴黎. 基于MODIS数据温度植被干旱指数干旱监测指标的等级划分[J]. 水土保持研究, 2017, 24(3):130-135.
Wu L. Classification of drought grades based on temperature vegetation drought index using the MODIS data[J]. Research of Soil and Water Conservation, 2017, 24(3):130-135.
[1] 孙禧勇, 李晶晶, 张瑞江, 王绍强, 冀欣阳, 李光玮. 基于遥感的雄安新区古水系网重构与城镇规划关系研究[J]. 自然资源遥感, 2023, 35(1): 132-139.
[2] 李显风, 袁正国, 邓卫华, 杨立苑, 周雪莹, 胡丽丽. 融合多种机器学习模型的2 m气温空间降尺度方法[J]. 自然资源遥感, 2023, 35(1): 57-65.
[3] 于维, 柯福阳, 曹云昌. 基于MODIS_TVDI/GNSS_PWV的云南省干旱特征时空分析[J]. 自然资源遥感, 2021, 33(3): 202-210.
[4] 李媛媛, 宁少尉, 丁伟, 金菊良, 张政. 最新GPM降水数据在黄河流域的精度评估[J]. 国土资源遥感, 2019, 31(1): 164-170.
[5] 徐彬仁, 魏瑗瑗. 基于随机森林算法对青藏高原TRMM降水数据进行空间统计降尺度研究[J]. 国土资源遥感, 2018, 30(3): 181-188.
[6] 许剑辉, 赵怡, 肖明虹, 钟凯文, 阮惠华. 基于空间自回归模型的广州市NDVI和NDBI与气温关系研究[J]. 国土资源遥感, 2018, 30(2): 186-194.
[7] 侯小刚, 郑照军, 李帅, 陈雪华, 崔宇. 近15年新疆逐日无云积雪覆盖产品生成及精度验证[J]. 国土资源遥感, 2018, 30(2): 214-222.
[8] 张宇婷, 张振飞, 张志. 新疆大南湖荒漠区1992—2014年间植被覆盖度遥感研究[J]. 国土资源遥感, 2018, 30(1): 187-195.
[9] 梅军军, 徐素宁, 彭令, 邢顾莲, 李文娟. 国产高分卫星数据在新疆铁厂沟煤矿塌陷调查中的应用[J]. 国土资源遥感, 2017, 29(s1): 132-136.
[10] 章钊颖, 鲁奕岑, 吴国周, 王永利. 基于多时相Sentinel-1A SAR数据草原地区降水量反演[J]. 国土资源遥感, 2017, 29(4): 156-160.
[11] 赵菲菲, 包妮沙, 吴立新, 孙瑞. 国产HJ-1B卫星数据的地表温度及湿度反演方法——以呼伦贝尔草原伊敏露天煤矿区为例[J]. 国土资源遥感, 2017, 29(3): 1-9.
[12] 程红霞, 梁凤超, 李帅, 林粤江. 天山山区大气可降水量的空间聚集特征分析[J]. 国土资源遥感, 2017, 29(1): 116-121.
[13] 曹颖, 郭兆成, 王强强, 焦润成. 基于遥感技术的降水入渗补给条件空间分异性研究[J]. 国土资源遥感, 2016, 28(3): 91-95.
[14] 卢新玉, 魏鸣, 王秀琴, 向芬. TRMM-3 B43降水产品在新疆地区的适用性研究[J]. 国土资源遥感, 2016, 28(3): 166-173.
[15] 孙慧, 谢小平. 基于MODIS数据的日照市近海浒苔监测及影响因子分析[J]. 国土资源遥感, 2016, 28(1): 144-151.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发