Please wait a minute...
 
自然资源遥感  2023, Vol. 35 Issue (2): 271-276    DOI: 10.6046/zrzyyg.2022091
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
热红外遥感技术在钢铁去产能监测中的应用
王平()
中测新图(北京)遥感技术有限责任公司,北京 100039
Application of thermal infrared remote sensing in monitoring the steel overcapacity cutting
WANG Ping()
China TOPRS Technology Co., Ltd., Beijing 100039, China
全文: PDF(3225 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

为了解决以往人工实地监察督导方式对钢铁企业监测耗时耗力等问题,文章提出基于卫星热红外传感器发现高温异常区,将传统的遥感解译与热红外异常值监测相结合,选用第一季度3—5月准同步数据,结合已有钢铁企业范围和同期高分辨率影像等数据分析钢铁企业的热红外阈值,根据热红外阈值及热异常分布情况提取出疑似钢铁企业/“地条钢”企业; 根据中高分辨率数字正射影像建立解译标志,套合已有钢铁企业和“地条钢”图斑,对异常区域进行判定; 最后,将已有成果作为检验实验精度的依据,对监测成果进行检验,形成钢铁去产能监测对比结果,综合检测正确率为88.15%。研究结果显示,Landsat8 10.6~11.19 μm热红外波段范围能够有效监测到钢铁企业高温异常,在未来热红外遥感热异常监测中可选取该范围波段。研究旨在为钢铁去产能监测探索更加广泛的数据源,从而为今后可能出现的数据瓶颈问题、应急监测问题等提供解决问题的思路与方法,为指导项目生产和钢铁去产能遥感监测提供一定的借鉴。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王平
关键词 热红外传感器热红外遥感钢铁去产能热异常检测    
Abstract

The monitoring of iron and steel enterprises through manual field supervision is time-consuming and labor-intensive. To address this problem, this study proposed identifying the high-temperature anomalous areas based on satellite-carried thermal infrared sensors. Then, based on conventional remote sensing interpretation combined with thermal infrared anomaly monitoring and the quasi-synchronous data of March to May in the first quarter, as well as the scope of existing iron and steel enterprises and high-resolution images of the same period, this study extracted information on suspected iron and steel enterprises/low-quality steel enterprises according to the thermal infrared threshold and the thermal anomaly distribution. Subsequently, interpretation symbols were constructed according to the medium- to high-resolution digital orthophoto maps (DOMs), and anomaly areas were identified by overlapping the map spots of existing iron and steel enterprises/low-quality steel enterprises. Finally, the monitoring results of the new method were tested using existing project results, forming the monitoring comparison results of steel overcapacity cutting. As a result, the comprehensive detection accuracy was 88.15%. The results of this study show that the Landsat8 data with a thermal infrared band of 10.6~11.19 μm can effectively monitor the high-temperature anomalies of iron and steel enterprises. Therefore, this band can be selected for future thermal anomaly monitoring based on thermal infrared remote sensing. This study is designed to explore more extensive data sources for monitoring steel overcapacity cutting and to provide approaches to solve the possible data bottlenecks and emergency monitoring problems. It can be used as a reference for guiding both project production and remote sensing monitoring of steel overcapacity cutting.

Key wordsthermal infrared sensor    thermal infrared remote sensing    steel overcapacity cutting    thermal anomaly detection
收稿日期: 2022-03-14      出版日期: 2023-07-07
ZTFLH:  TP79  
基金资助:中国国土勘测规划院项目“2018年遥感监测生产—土地资源全天候遥感监测数据处理与分析项目”(0701-184150100006)
作者简介: 王 平(1991-),女,硕士,工程师,主要从事自然资源遥感研究。Email: wp15533259688@163.com
引用本文:   
王平. 热红外遥感技术在钢铁去产能监测中的应用[J]. 自然资源遥感, 2023, 35(2): 271-276.
WANG Ping. Application of thermal infrared remote sensing in monitoring the steel overcapacity cutting. Remote Sensing for Natural Resources, 2023, 35(2): 271-276.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2022091      或      https://www.gtzyyg.com/CN/Y2023/V35/I2/271
Fig.1  技术路线图
Fig.2  辐射亮温图像
Fig.3  典型地物的BJ-2影像和亮温图像
Fig.4  BJ-2影像与热异常图、热红外波段反射率图对比
Fig.5  钢铁企业热异常
Fig.6  高温异常区监测结果对比
监测类型 Landsat8
TIRS结果/个
项目监测
结果/个
未生产/
正确率/
%
高温异常点 119 135 88.15
已知钢铁企业 50 58 8
已知“地条钢”企业 8 12 4
新增钢铁企业 1 1
新增“地条钢”企业 7 8
新增其他企业 53
Tab.1  监测结果对比
[1] 张爱因, 张晓丽. Landsat8地表温度反演及其与MODIS温度产品的对比分析[J]. 北京林业大学学报, 2019, 41(3):1-13.
Zhang A Y, Zhang X L. Land surface temperature retrieved from Landsat8 and comparison with MODIS temperature product[J]. Journal of Beijing Forestry University, 2019, 41(3):1-13.
[2] Synder W C, Wan Z, Zhang Y. Classification-based emissivity for land surface temperature measurement fromspace[J]. International Journal of Remote Sensing, 1998, 19(14):2753-2774.
doi: 10.1080/014311698214497
[3] Li Z L, Tang B H, Wu H, et al. Satellite-derived land surface temperature:Current status and perspectives[J]. Remote Sensing of Environment, 2013, 131:14-37.
doi: 10.1016/j.rse.2012.12.008
[4] 徐涵秋. 新型Landsat8卫星影像的反射率和地表温度反演[J]. 地球物理学报, 2015, 58(3):741-747.
Xu H Q. Retrieval of the reflectance and land surface temperature of the newly-launched Landsat8 satellite[J]. Chinese Journal of Geophysics, 2015, 58(3):741-747.
[5] Qin Z, Karnieli A, Berliner P. A mono-window algorithmfor retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region[J]. International Journal of Remote Sensing, 2001, 22(18):3719-3746.
doi: 10.1080/01431160010006971
[6] 张玉君. Landsat8简介[J]. 国土资源遥感, 2013, 25(1):176-177.
Zhang Y J. Landsat8 introduction[J]. Remote Sensing for Land and Resources, 2013, 25(1):176-177.
[7] Schmugge T, Hook S J, Coll C. Recovering surface temperature and emissivity from thermal infrared multispectral data[J]. Remote Sensing of Environment, 1998, 65(2):121-131.
doi: 10.1016/S0034-4257(98)00023-6
[8] 杨佩国, 胡俊锋, 刘睿. HJ-1B卫星热红外遥感影像农田地表温度反演[J]. 测绘科学, 2013, 181(1):60-62.
Yang P G, Hu J F, Liu R. Land surface temperature retrieval method in farmland area for HJ-1B IRS4[J]. Science of Surveying and Mapping, 2013, 181(1):60-62.
[9] 陈峰, 殷守敬, 朱利, 等. HJ-1B热红外辐射定标对地表温度反演的影响[J]. 遥感学报, 2016, 20(4):601-609.
Chen F, Yin S J, Zhu L, et al. Radiometric calibration of the HJ-1B thermal channel and its effects on land surface temperature retrieval[J]. National Remote Sensing Bulletin, 2016, 20(4):601-609.
[10] 朱亚静, 邢立新, 潘军, 等. 短波红外遥感高温地物目标识别方法研究[J]. 遥感信息, 2011(6):33-36.
Zhu Y J, Xing L X, Pan J, et al. Method of identifying high-temperature target using shortwave infrared remote sensing data[J]. Remote Sensing Information, 2011(6):33-36.
[11] Van de Griend A A, Owe M. On the relationship between thermal emissivity and the normalized difference vegetation index for natural surfaces[J]. International Journal of Remote Sensing, 1993, 14(6):1119-1131.
doi: 10.1080/01431169308904400
[12] 陈良富, 徐希孺. 热红外遥感中大气下行辐射效应的一种近似计算与误差估计[J]. 遥感学报, 1999, 3(3):165-l70.
Chen L F, Xu X R. An approximate numeration and error estimation on atmospheric downward radiance effectin thermal infrared remote sensing[J]. Journal of Remote Sensing, 1999, 3(3):165-l70.
[13] 陈鹏飞, 卢力, 朱华忠, 等. 不同分辨率遥感影像的钢铁厂识别适宜性研究[J]. 地球信息科学, 2015, 17(9):1119-1127.
Chen P F, Lu L, Zhu H Z, et al. Research on the suitability of image at different resolutions for the identification of steel enterprise using remote sensing[J]. Journal of Geo-Information Science, 2015, 17(9):1119-1127.
[14] 田国良, 柳钦火, 陈良富. 热红外遥感[M]. 北京: 电子工业出版社, 2014:5-13.
Tian G L, Liu Q H, Chen L F. Thermal remote sensing[M]. Beijing: Publishing House of Electronics Industry, 2014:5-13.
[15] Andersen H S. Land surface temperature estimation based on NOAA-AVHRR data during the HAPEX-Sahel experiment[J]. Journal of Hydrology, 1997,188-189:788-814.
[16] Prata A J, Caselles V, Coll C, et al. Thermal remote sensing of land surface temperature from satellites:Current status and future prospects[J]. Remote Sensing Reviews, 1995, 12(3):175-224.
doi: 10.1080/02757259509532285
[17] 李特雅, 宋妍, 于新莉, 等. 卫星热红外温度反演钢铁企业炼钢月产量估算模型[J]. 自然资源遥感, 2021, 33(4):121-129.doi:10.6046/zrzyyg.2020399.
doi: 10.6046/zrzyyg.2020399
Li T Y, Song Y, Yu X L, et al. Monthly production estimation model for steel companies based on inversion of satellite thermal infrared temperature[J]. Remote Sensing for Natural Resources, 2021, 33(4):121-129.doi:10.6046/zrzyyg.2020399.
doi: 10.6046/zrzyyg.2020399
[1] 李特雅, 宋妍, 于新莉, 周圆锈. 卫星热红外温度反演钢铁企业炼钢月产量估算模型[J]. 自然资源遥感, 2021, 33(4): 121-129.
[2] 李静, 孙强强, 张平, 孙丹峰, 温礼, 李宪文. 基于多时相热红外遥感的钢铁企业生产状态辅助监测[J]. 国土资源遥感, 2019, 31(1): 220-228.
[3] 余健, 姚云军, 赵少华, 贾坤, 张晓通, 赵祥, 孙亮. 基于改进的METRIC模型的农田潜热通量估算[J]. 国土资源遥感, 2018, 30(3): 83-88.
[4] 陈瀚阅, 朱利, 李家国, 范协裕. 基于Landsat8数据的2种海表温度反演单窗算法对比——以红沿河核电基地海域为例[J]. 国土资源遥感, 2018, 30(1): 45-53.
[5] 关震, 吴虹, 曹翠, 黄晓娟, 郭琳, 柳艳, 郝敏. 基于ETM+6-γ示矿信息反演的花山花岗岩铀矿预测[J]. 国土资源遥感, 2014, 26(3): 92-98.
[6] 温少妍, 屈春燕, 单新建, 闫丽莉, 宋冬梅. 祁连山和首都圈卫星热红外背景场变化特征[J]. 国土资源遥感, 2013, 25(3): 138-144.
[7] 马红章, 柳钦火, 闻建光, 施建. 热红外与L波段土壤温度的数值模拟及差异分析[J]. 国土资源遥感, 2011, 23(2): 26-32.
[8] 徐永明, 覃志豪, 万洪秀. 热红外遥感反演近地层气温的研究进展[J]. 国土资源遥感, 2011, 23(1): 9-14.
[9] 贺佳惠, 梁春利, 李名松.
核电站近岸温度场航空热红外遥感测量数据处理研究
[J]. 国土资源遥感, 2010, 22(3): 51-53.
[10] 于艳梅, 甘甫平, 周萍, 闫柏琨. 热红外遥感火星矿物填图方法初步研究及应用[J]. 国土资源遥感, 2009, 21(4): 35-39.
[11] 樊辉. 基于Landsat TM的城市热岛效应与地表特征参数稳健关系模型[J]. 国土资源遥感, 2008, 20(3): 45-51.
[12] 陈峰, 何报寅, 龙占勇, 杨小琴. 利用Landsat ETM+分析城市热岛与下垫面的空间分布关系[J]. 国土资源遥感, 2008, 20(2): 56-61.
[13] 刘吉平, 朱海燕.  武汉市城区热场变化的遥感检测与影响因素分析[J]. 国土资源遥感, 2006, 18(2): 39-41.
[14] 甘甫平, 陈伟涛, 张绪教, 闫柏琨, 刘圣伟, 杨苏明. 热红外遥感反演陆地表面温度研究进展[J]. 国土资源遥感, 2006, 18(1): 6-11.
[15] 谢连文. 热红外图像钾盐异常信息解释[J]. 国土资源遥感, 2000, 12(2): 9-12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发