Please wait a minute...
 
自然资源遥感  2023, Vol. 35 Issue (2): 122-131    DOI: 10.6046/zrzyyg.2022117
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于GF-1影像的蒙古高原干旱半干旱地区自然道路提取——以蒙古国古尔班特斯苏木为例
梁茜亚1,2(), 王卷乐1,3(), 李朋飞2, DAVAADORJ Davaasuren4
1.中国科学院地理科学与资源研究所资源与环境信息系统国家重点实验室,北京 100101
2.西安科技大学测绘科学与技术学院,西安 710054
3.江苏省地理信息资源开发与利用协同创新中心,南京 210023
4.蒙古国立大学艺术科学学院,乌兰巴托 14201
GF-1 images-based information extraction of natural roads in arid and semi-arid regions of the Mongolian Plateau: A case study of Gurvantes Soum, Mongolia
LIANG Xiya1,2(), WANG Juanle1,3(), LI Pengfei2, DAVAADORJ Davaasuren4
1. State Key Laboratory of Resources and Environment Information System, Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences,Beijing 100101,China
2. College of Geomatics, Xi’an University of Science and Technology, Xi’an 710054, China
3. Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application,Nanjing 210023,China
4. School of the Art & Sciences, National University of Mongolia, Ulaanbaatar 14201, Mongolia
全文: PDF(6672 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

蒙古高原广袤的干旱半干旱地区存在大量未经规划的自然道路,也称临时道路或越野公路。此类道路由车辆任意行驶碾压导致,会对地表生态及其稳定性造成影响,加剧干旱半干旱地区土地退化。由于自然道路数量众多、分布不规则且易随着区域发展而改变,因而高效精确获取这些信息是大范围草原地区的一个紧迫需求和难点。该文以蒙古国自然道路为主要提取目标,基于国产高分一号(GF-1)影像采用面向对象的方法进行研究区道路信息提取。首先对覆盖研究区的GF-1影像进行数据预处理,采用多尺度分割方法进行影像对象分割; 然后对需要提取的自然道路进行特征分析,通过计算光谱、几何特征参数及随机选取道路样本统计样本特征值,选出能表达自然道路特征的参数构建道路提取规则集; 进而结合多种方法的组合应用,最终通过最邻近分类法实现对道路的初步提取,采用阈值分类法等分类算法优化道路信息。结果表明,提取的蒙古国古尔班特斯苏木研究区自然道路长度为3 708.745 km,密度为0.129 km/km2,总体呈现东南密集,西、北部稀疏的分布特征,与本地区实际的煤矿企业生产和居民城镇生活情况相符。研究表明所提方法可以较完整地提取出研究区自然道路,可为蒙古高原等广大干旱半干旱地区自然道路提取提供方法借鉴。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
梁茜亚
王卷乐
李朋飞
DAVAADORJ Davaasuren
关键词 高分一号影像蒙古高原自然道路越野公路道路提取面向对象    
Abstract

Many unplanned natural roads, which are also known as temporary roads or unpaved roads, exist in the vast arid and semi-arid regions of the Mongolian Plateau. These natural roads, which were formed due to the arbitrary running of vehicles, will influence the surface ecology and its stability and aggravate land degradation in arid and semi-arid regions. They have a large quantity, are distributed irregularly, and tend to change with regional development. Therefore, there is an urgent need for the efficient and accurate information acquisition of natural roads in large-scale grassland regions, which is a challenge. Based on domestic high-resolution satellite (GF-1) images, this study extracted information on the natural roads in Mongolia using the object-oriented method. First, the data of GF-1 images covering the study area were preprocessed, and the image objects were segmented using the multiresolution segmentation method. Then, the characteristics of the natural roads were analyzed for information extraction. By calculating the parameters of spectral and geometric features and randomly selecting road samples to statistically analyze the characteristic values of samples, the parameters that could characterize the natural roads were selected to construct a set of rules for information extraction of roads. Finally, information on roads was extracted and optimized by combining multiple methods for classification, among which the nearest neighbor classification method was used for preliminary extraction while other classification algorithms such as threshold classification were used for optimization. Consequently, natural roads with a length of 3 708.745 km were extracted in the study area, with a density of 0.129 km/km2. This result shows that the natural roads in the study area are densely distributed in the southeast and sparsely distributed in the north and west overall. These distribution characteristics are consistent with the actual production of coal mine enterprises and the living of local residents in the study area. Therefore, the method proposed in this study can extract almost complete information about natural roads in the study area and thus can be used as a reference for the information extraction of natural roads in vast arid and semi-arid regions of the Mongolian Plateau.

Key wordsGF-1 image    Mongolian Plateau    natural road    unpaved road    road information extraction    object-oriented
收稿日期: 2022-04-06      出版日期: 2023-07-07
ZTFLH:  TP79  
基金资助:国家自然科学基金项目“多源特征空间和地理分区建模支持下的蒙古国荒漠化精细反演”(41971385);“蒙古国色楞格河流域畜牧业精准调控方法与网络协同平台研究”(32161143025)
通讯作者: 王卷乐(1976-),男,博士,研究员,主要从事资源环境科学数据集成与共享研究。Email: wangjl@igsnrr.ac.cn
作者简介: 梁茜亚(1997-),女,硕士研究生,主要从事土地退化(荒漠化)及驱动因素分析研究。Email: liangxy@lreis.ac.cn
引用本文:   
梁茜亚, 王卷乐, 李朋飞, DAVAADORJ Davaasuren. 基于GF-1影像的蒙古高原干旱半干旱地区自然道路提取——以蒙古国古尔班特斯苏木为例[J]. 自然资源遥感, 2023, 35(2): 122-131.
LIANG Xiya, WANG Juanle, LI Pengfei, DAVAADORJ Davaasuren. GF-1 images-based information extraction of natural roads in arid and semi-arid regions of the Mongolian Plateau: A case study of Gurvantes Soum, Mongolia. Remote Sensing for Natural Resources, 2023, 35(2): 122-131.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2022117      或      https://www.gtzyyg.com/CN/Y2023/V35/I2/122
卫星名称 轨道高度/km 传感器 重访周期/d 波段数 波谱或频率范围/μm 空间分辨率/m 幅宽/km 工作模式
GF-1 645 PMS全色 4 5 0.45~0.90 2 60 推扫成像
PMS多光谱 4 5 0.45~0.52 8
0.52~0.59
0.63~0.69
0.77~0.89
WFV多光谱 2 4 0.45~0.52 16 800
0.52~0.59
0.63~0.69
0.77~0.89
Tab.1  GF-1遥感卫星主要参数[35]
Fig.1  研究区部分影像数据
Fig.2  道路提取流程图
Fig.3  影像分割实验图
Fig.4  影像最优分割参数组合分割结果
Fig.5  影像光谱特征参数计算结果
Fig.6  影像几何特征参数计算结果
序号 参数特征 特征值范围、阈值
1 长宽比 [5,19.3]
2 形状指数 [2.4,6]
3 密度 [0.38,0.75]
4 亮度 [1 460,1 871]
5 均值 [1 414,1 949]
6 标准差 [143,254]
Tab.2  自然道路提取规则集
Fig.7  自然道路错划分优化
Fig.8  2015年古尔班特斯苏木道路提取分布图
Fig.9  道路分布与高程叠加图
[1] 张德平, 德力, 赵家明, 等. 车辆碾压引起草原沙漠化研究进展[J]. 呼伦贝尔学院学报, 2011, 19 (3):82-88.
Zhang D P, De L, Zhao J M, et al. Research progress of grassland desertification caused by vehicle rolling[J]. Journal of Hulunbeier University, 2011, 19(3):82-88.
[2] 张德平, 王效科, 哈斯, 等. 呼伦贝尔沙质草原风蚀坑研究(1)——形态、分类、研究意义[J]. 中国沙漠, 2006, 26(6):894-902, 1052-1058.
Zhang D P, Wang X K, Ha S, et al. HulunBuir sandy grassland blowouts:Geomorphology,classification,and significances[J]. Journal of Desert Research, 2006, 26(6):894-902,1052-1058.
[3] 赵兴梁, 杨根生. 论北半球三大温带草原农垦与沙漠化的关系[J]. 中国沙漠, 2002, 22(5):39-44.
Zhao X L, Yang G S. Reclamation of steppe and related desertification in three temperate zones of North Hemisphere[J]. Journal of Desert Research, 2002, 22(5):39-44.
[4] Keshkamat S S, Tsendbazar N E, Zuidgeest M H P, et al. The environmental impact of not having paved roads in arid regions:An example from Mongolia[J]. Ambio, 2012, 41(2):202-205.
doi: 10.1007/s13280-011-0155-3
[5] Lovich J E, Bainbridge D. Anthropogenic degradation of the southern California desert ecosystem and prospects for natural recovery and restoration[J]. Environmental Management, 1999, 24(3):309-326.
pmid: 10486042
[6] Kinugasa T, Oda S. Effects of vehicle track formation on soil seed banks in grasslands with different vegetation in the Mongolian steppe[J]. Ecological Engineering, 2014, 67:112-118.
doi: 10.1016/j.ecoleng.2014.03.078
[7] Stebbins R C. Off-Road and the fragile desert[J]. American Biology Teacher, 1974, 36(4):203-208,220.
doi: 10.2307/4444747
[8] 常月明, 雷俊义, 李永香, 等. 半干旱丘陵地区乡村道路侵蚀特点和影响因素研究——以内蒙古四子王旗东南部为例[J]. 水土保持研究, 2014, 21(5):116-121.
Chang Y M, Lei J Y, Li Y X, et al. Study on the road erosion characteristics and the effect factors in semiarid hilly region:Take the Southeast Siziwang County,Inner Mongolia as an example[J]. Research of Soil and Water Conservation, 2014, 21(5):116-121.
[9] Batkhishig O. Human impact and land degradation in Mongolia[M]// Dryland East Asia:Land Dynamics amid Social and Climate Change.De Gruyter, 2013:265-282.
[10] Davaadorj D, Byambabayar G, Oyunkhand B, et al. Soil erosion assessment in southern Mongolia:Case Study of Gurvates Soum[J]. Journal of Young Scientists, 2016(4):169-181.
[11] MNEM(The Ministry of Nature and Environment of Mongolia). Country report on natural disasters in Mongolia[M]. Ulaanbaatar: MNEM, 1999.
[12] National Statistics Office of Mongolia. Mongolia statistical yearbook 2016[M]. Ulaanbaatar: National Statistics Office of Mongolia, 2017.
[13] 李小龙, 张昀. 道路信息提取方法综述[J]. 测绘通报, 2020(6):22-27.
doi: 10.13474/j.cnki.11-2246.2020.0174
Li X L, Zhang Y. Summary of road information extraction methods[J]. Bulletin of Surveying and Mapping, 2020(6):22-27.
doi: 10.13474/j.cnki.11-2246.2020.0174
[14] 冯鹏, 高峰. 高分遥感影像中道路信息提取方法综述[J]. 现代电子技术, 2015, 38(17):53-57.
Feng P, Gao F. Method of road information extraction in high resolution remote sensing images[J]. Modern Electronics Technique, 2015, 38(17):53-57.
[15] 杨晓雯. 遥感图像道路信息提取方法研究进展[J]. 中小企业管理与科技, 2017(9):189-190.
Yang X W. Research progress of road information extraction from remote sensing images[J]. Management & Technology of SME, 2017(9):189-190.
[16] 吕建国. 基于面向对象的高分辨率遥感影像道路信息提取方法[J]. 陕西师范大学学报(自然科学版), 2008, 36(s2):80-82.
Lyu J G. Road extraction based on object-oriented from high-resolution remote sensing images[J]. Journal of Shaanxi Normal University (Natural Science Edition), 2008, 36(s2):80-82.
[17] 何勇, 陈昌鸣, 熊增连, 等. 基于eCognition的面向对象农村公路提取[J]. 重庆交通大学学报(自然科学版), 2012, 31(6):1194-1197.
doi: 10.3969/j.issn.1674-0696.2012.06.23
He Y, Chen C M, Xiong Z L, et al. Object-oriented rural roads extraction based on eCognition[J]. Journal of Chongqing Jiaotong University (Natural Science), 2012, 31(6):1194-1197.
[18] 顾红军. 基于高分辨率遥感影像的道路网信息提取研究现状[J]. 中国非金属矿工业导刊, 2018(4):53-54.
Gu H J. Research status of road network information extraction based on high resolution remote sensing images[J]. China Non-metallic Minerals Industry, 2018(4):53-54.
[19] 陈昌鸣. 面向对象的高分辨率遥感影像农村公路专题信息提取[D]. 重庆: 重庆交通大学, 2011.
Chen C M. Rural road extraction base on object-oriented method with high-resolution remote sensing image[D]. Chongqing: Chongqing Jiaotong University, 2011.
[20] Das S, Mirnalinee T T, Varghese K. Use of salient features for the design of a multistage framework to extract roads from high-resolution multispectral satellite images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10):3906-3931.
doi: 10.1109/TGRS.2011.2136381
[21] Courtrai L, Lefèvre S. Road network extraction from remote sensing using region-based mathematical morphology[C]// 2014 8th IAPR Workshop on Pattern Recognition in Remote Sensing.IEEE, 2014:1-4.
[22] 周爱霞, 余莉, 冯径, 等. 基于面向对象方法的高分辨率遥感影像道路提取方法研究[J]. 测绘与空间地理信息, 2017, 40(2):1-4.
Zhou A X, Yu L, Feng J, et al. Road information extraction from high-resolution remote sensing image based on object-oriented image analysis method[J]. Geomatics & Spatial Information Technology, 2017, 40(2):1-4.
[23] 王钰, 何红艳, 谭伟, 等. 一种多特征融合的高分辨率遥感图像道路提取算法[J]. 遥感信息, 2019, 34(1):111-116.
Wang Y, He H Y, Tan W, et al. High-resolution remote sensing image road extraction algorithm based on multi-feature fusion[J]. Remote Sensing Information, 2019, 34(1):111-116.
[24] 刘玉梅, 张建国, 孙铭阳. 高分辨率遥感影像道路信息提取[J]. 城市地理, 2017(22):153-155.
Liu Y M, Zhang J G, Sun M Y. Road information extraction from high resolution remote sensing images[J]. City Geography, 2017(22):153-155.
[25] 余柏蒗, 刘红星, 吴健平. 面向对象的城市空间信息遥感分析的理论框架[J]. 华东师范大学学报(自然科学版), 2010(6):12-25,63.
Yu B L, Liu H X, Wu J P. Exploring the theoretical framework of object-oriented analysis for urban spatial information using remote sensing data[J]. Journal of East China Normal University (Natural Science), 2010(6):12-25,63.
[26] 徐冠华, 柳钦火, 陈良富, 等. 遥感与中国可持续发展:机遇和挑战[J]. 遥感学报, 2016, 20(5):679-688.
Xu G H, Liu Q H, Chen L F, et al. Remote sensing for China’s sustainable development:Opportunities and challenges[J]. Journal of Remote Sensing, 2016, 20(5):679-688.
[27] 白照广. 高分一号卫星的技术特点[J]. 中国航天, 2013(8):5-9.
Bai Z G. Technical characteristics of GF-1 satellite[J]. Aerospace China, 2013(8):5-9.
[28] 张宏伟. 高分辨率影像中农村道路提取方法研究[D]. 重庆: 重庆大学, 2016.
Zhang H W. The rural road extraction method research based on high resolution images[D]. Chongqing: Chongqing University, 2016.
[29] 那音太, 秦福莹, 贾根所, 等. 近54 a蒙古高原降水变化趋势及区域分异特征[J]. 干旱区地理, 2019, 42(6):1253-1261.
Na Y T, Qin F Y, Jia G S, et al. Change trend and regional differen-tiation of precipitation over the Mongolian Plateau in recent 54 years[J]. Arid Land Geography, 2019, 42(6):1253-1261.
[30] 萨楚拉, 刘桂香, 包刚, 等. 近十年蒙古高原积雪面积时空变化研究[J]. 内蒙古师范大学学报(自然科学汉文版), 2012, 41(5):531-536.
Sa C L, Liu G X, Bao G, et al. The spatial and temporal changes of snow cover of the Mongolian Plateau in recent 10 years[J]. Journal of Inner Mongolia Normal University (Natural Science Edition), 2012, 41(5):531-536.
[31] 康尧, 郭恩亮, 王永芳, 等. 温度植被干旱指数在蒙古高原干旱监测中的应用[J]. 应用生态学报, 2021, 32(7):2534-2544.
doi: 10.13287/j.1001-9332.202107.018
Kang Y, Guo E L, Wang Y F, et al. Application of temperature vegetation dryness index for drought monitoring in Mongolian Plateau[J]. Chinese Journal of Applied Ecology, 2021, 32(7):2534-2544.
doi: 10.13287/j.1001-9332.202107.018
[32] 郭婵妤, 李华, 杨恺, 等. 蒙古国煤炭资源评价[J]. 中国煤炭地质, 2019, 31(12):25-29.
Guo C Y, Li H, Yang K, et al. Assessment of coal resources in Mongolia[J]. Coal Geology of China, 2019, 31(12):25-29.
[33] 秦增刚, 孙树光. 浅谈蒙古国煤炭资源[J]. 西部资源, 2014(2):136-137.
Qin Z G, Sun S G. Discussion on coal resources in Mongolia[J]. Western Resources, 2014(2):136-137.
[34] 王妍, 刘闯, 翟禹镓. 蒙古煤炭工业发展趋势[J]. 中国煤炭, 2021, 47(10):67-72.
Wang Y, Liu C, Zhai Y J. Development trend of Mongolia coal industry[J]. China Coal, 2021, 47(10):67-72.
[35] 孙伟伟, 杨刚, 陈超, 等. 中国地球观测遥感卫星发展现状及文献分析[J]. 遥感学报, 2020, 24(5):479-510.
Sun W W, Yang G, Chen C, et al. Development status and literature analysis of China’s earth observation remote sensing satellites[J]. Journal of Remote Sensing (Chinese), 2020, 24(5):479-510.
[36] 陆春玲, 王瑞, 尹欢. “高分一号”卫星遥感成像特性[J]. 航天返回与遥感, 2014, 35(4):67-73.
Lu C L, Wang R, Yin H. GF-1 satellite remote sensing characters[J]. Spacecraft Recovery & Remote Sensing, 2014, 35(4):67-73.
[37] 李伟健. 基于GF-1卫星影像的道路信息提取与应用[D]. 成都: 四川师范大学, 2020.
Li W J. Road information extraction and application based on GF-1 satellite image[D]. Chengdu: Sichuan Normal University, 2020.
[38] 于爱洁, 李桂芬, 张佳彬. 地理国情监测中高分一号卫星数据处理关键要点分析[J]. 测绘与空间地理信息, 2020, 43(s1):91-93.
Yu A J, Li G F, Zhang J B. Analysis on key points of data processing for GF-1 satellite in geographical situation monitoring[J]. Geomatics & Spatial Information Technology, 2020, 43(s1):91-93.
[39] 何志强, 梁四幺. 基于eCognition的高分辨率遥感影像道路自动提取方法[J]. 科技创新与生产力, 2018(2):40-42,46.
He Z Q, Liang S Y. Automatic extraction method of road information from high-resolution remote sensing image based on eCognition[J]. Sci-tech Innovation and Productivity, 2018(2):40-42,46.
[40] 胡建青. 面向对象的高分辨率遥感影像道路信息提取[D]. 北京: 北京交通大学, 2019.
Hu J Q. Object-oriented road information extraction from high resolution remote sensing images[D]. Beijing: Beijing Jiaotong University, 2019.
[41] 张阳, 赛西雅拉图, 其力木格. 典型草原牧区道路时空变化特征分析[J]. 安徽农学通报, 2020, 26(9):82-87.
Zhang Y, Saixiyalatu, Qilimuge. Analysis of spatiotemporal changes of roads in typical grassland pastoral areas[J]. Anhui Agricultural Science Bulletin, 2020, 26(9):82-87.
[42] 锡林郭勒盟统计局. 锡林郭勒盟统计年鉴(2019)[M]. 锡林浩特: 锡林郭勒盟统计局, 2020.
Xilin Gol League Statistics Bureau. Statistical yearbook of Xilin Gol League (2019)[M]. Xilinhot: Xilin Gol League Statistics Bureau, 2020.
[43] 张运刚, 张树文, 陈冬勤. 通化市高程梯度变化与土地利用景观格局分异研究[J]. 农业系统科学与综合研究, 2010, 26(3):271-276.
Zhang Y G, Zhang S W, Chen D Q. Analysis of elevation gradient change and land use landscape heterogeneity in Tonghua City[J]. System Sciences and Comprehensive Studies in Agriculture, 2010, 26(3):271-276.
[44] 李志兰. 内蒙古策克口岸进口蒙古国原煤突破200万吨[EB/OL]. https://www.imsilkroad.com/news/p/30707.html,2014-04-15/2021-12-04.
Li Z L. Ceke port of Inner Mongolia imported of raw coal from Mongolia exceeded 2 million tons[EB/OL]. https://www.imsilkroad.com/news/p/30707.html,2014-04-15/2021-12-04.
[45] 孟小玉, 齐晓明, 佟宝全. 蒙古国矿产资源开发对经济发展的影响研究[J]. 干旱区资源与环境, 2021, 35(12):100-105.
Meng X Y, Qi X M, Tong B Q. Research on the influence of mineral resources exploitation on economic development in Mongolian[J]. Journal of Arid Land Resources and Environment, 2021, 35(12):100-105.
[46] Mongolian Statistical Information Service[EB/OL]. http://1212.mn/,2021-12-02.
[1] 张仙, 李伟, 陈理, 杨昭颖, 窦宝成, 李瑜, 陈昊旻. 露天开采矿区要素遥感提取研究进展及展望[J]. 自然资源遥感, 2023, 35(2): 25-33.
[2] 石敏, 李慧颖, 贾明明. 基于GEE云平台与Landsat数据的山口自然保护区红树林时空变化分析[J]. 自然资源遥感, 2023, 35(2): 61-69.
[3] 李天驰, 王道儒, 赵亮, 凡仁福. 基于Landsat8遥感数据的西沙群岛永乐环礁底质分类与变化分析[J]. 自然资源遥感, 2023, 35(2): 70-79.
[4] 李晨辉, 郝利娜, 许强, 王一, 严丽华. 面向对象的高分辨率遥感影像地震滑坡分层识别[J]. 自然资源遥感, 2023, 35(1): 74-80.
[5] 赵凌虎, 袁希平, 甘淑, 胡琳, 丘鸣语. 改进Deeplabv3+的高分辨率遥感影像道路提取模型[J]. 自然资源遥感, 2023, 35(1): 107-114.
[6] 张雨, 明冬萍, 赵文祎, 徐录, 赵治, 刘冉. 基于高分光学卫星影像的泸定地震型滑坡提取与分析[J]. 自然资源遥感, 2023, 35(1): 161-170.
[7] 赵连杰, 吴孟泉, 郑龙啸, 栾绍鹏, 赵贤峰, 薛明月, 刘佳燕, 刘晨曦. 胶东半岛北部海岸线时空变迁及驱动分析[J]. 自然资源遥感, 2022, 34(4): 87-96.
[8] 范莹琳, 娄德波, 张长青, 魏英娟, 贾福东. 基于面向对象的铁尾矿信息提取技术研究——以迁西地区北京二号遥感影像为例[J]. 自然资源遥感, 2021, 33(4): 153-161.
[9] 王佳新, 萨楚拉, 毛克彪, 孟凡浩, 罗敏, 王牧兰. 蒙古高原土壤湿度时空变化格局及其对气候变化的响应[J]. 国土资源遥感, 2021, 33(1): 231-239.
[10] 蔡祥, 李琦, 罗言, 齐建东. 面向对象结合深度学习方法的矿区地物提取[J]. 国土资源遥感, 2021, 33(1): 63-71.
[11] 苏龙飞, 李振轩, 高飞, 余敏. 遥感影像水体提取研究综述[J]. 国土资源遥感, 2021, 33(1): 9-11.
[12] 张鹏, 林聪, 杜培军, 王欣, 唐鹏飞. 南京市生态红线区高分辨率遥感精准监测方法与应用[J]. 国土资源遥感, 2020, 32(3): 157-164.
[13] 夏既胜, 马梦莹, 符钟壬. 基于GF-2遥感影像的机械性破损面提取方法[J]. 国土资源遥感, 2020, 32(2): 26-32.
[14] 冯林艳, 谭炳香, 王晓慧, 陈新云, 曾伟生, 戚曌. 基于分布函数的对象级森林变化快速检测[J]. 国土资源遥感, 2020, 32(2): 73-80.
[15] 于博, 张军军, 李春庚, 安居白. 图像语义分割辅助的车载激光点云道路提取方法[J]. 国土资源遥感, 2020, 32(1): 66-74.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发