Please wait a minute...
 
自然资源遥感  2023, Vol. 35 Issue (2): 25-33    DOI: 10.6046/zrzyyg.2022141
  综述 本期目录 | 过刊浏览 | 高级检索 |
露天开采矿区要素遥感提取研究进展及展望
张仙1,2(), 李伟1,2, 陈理1, 杨昭颖1,2, 窦宝成3, 李瑜1(), 陈昊旻1
1.中国自然资源航空物探遥感中心,北京 100083
2.自然资源部航空地球物理与遥感地质重点实验室,北京 100083
3.之江实验室,北京 100086
Research progress and prospect of remote sensing-based feature extraction of opencast mining areas
ZHANG Xian1,2(), LI Wei1,2, CHEN Li1, YANG Zhaoying1,2, DOU Baocheng3, LI Yu1(), CHEN Haomin1
1. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China
2. Key Laboratory of Airborne Geophysics and Remote Sensing Geology, Ministry of Natural Resources, Beijing 100083, China
3. Zhijiang Lab, Beijing 100086, China
全文: PDF(771 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

露天开采矿区要素遥感提取是矿业活动监测研究中的热门话题,但少有对相关研究的系统梳理和总结。为此,该文首先对露天开采矿区要素进行了界定,按要素种类将要素提取分为单要素提取和多要素提取,并简述了与一般地物提取和土地利用分类的区别; 其次,简要总结了目前相关研究的遥感数据来源与处理平台; 然后,将露天开采矿区要素遥感提取方法分为目视解译方法、基于传统特征的方法和深度学习方法3类,分别总结其研究现状,并分析了各方法的优缺点以及适用情况; 最后,对露天开采矿区要素遥感提取的未来研究方向进行了展望。文章认为有效地利用多源多时相数据、更强特征提取能力网络和复杂场景优化方法,进一步推动矿区要素智能化、精细化和鲁棒性提取是未来发展的趋势。研究结果可为露天开采矿区要素遥感提取的研究与应用提供参考。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张仙
李伟
陈理
杨昭颖
窦宝成
李瑜
陈昊旻
关键词 露天开采矿区要素遥感提取方法面向对象影像分析深度学习    
Abstract

The remote sensing-based feature extraction of opencast mining areas is a hot topic in research on the monitoring of mining activities. However, there is a lack of systematic reviews and summaries of relevant studies. Therefore, this study first defined the features of an opencast mining area, divided the feature extraction into single- and multi-feature extractions according to feature types, and briefly described the differences between the feature extraction of opencast mining areas and general surface feature extraction and land use classification. Then, this study briefly summarized the sources and data processing platforms of remote sensing images available in relevant studies. Subsequently, this study divided the remote sensing-based methods for the feature extraction of opencast mining areas into three categories, namely visual interpretation, traditional feature-based approach, and deep learning. Then, it summarized the research status of these methods and analyzed their advantages, disadvantages, and applicability. Finally, this study proposed the future research direction of the remote sensing-based feature extraction of opencast mining areas, holding that the future developmental trend is to further promote the intelligent, fine-scale, and robust feature extraction of mining areas by effectively utilizing multi-source and multi-temporal data, networks with a stronger feature extraction capacity, and methods for the optimization of complex scenes. The results of this study can be used as a reference for the study and application of remote sensing-based feature extraction of opencast mining areas.

Key wordsopencast mining    mining area features    extraction method based on remote sensing images    object-based image analysis    deep learning
收稿日期: 2022-04-14      出版日期: 2023-07-07
ZTFLH:  TP79  
基金资助:自然资源部航空物理与遥感地质重点实验室课题“面向对象的红土型镍矿多要素识别提取与矿业活动变化定量分析研究”(2020YFL32);“基于深度学习的滑坡体识别方法研究”(2020YFL26)
通讯作者: 李 瑜(1982-),女,硕士,正高级工程师,主要研究方向为遥感技术应用及期刊编辑。Email: gtzyygliyu@163.com
作者简介: 张 仙(1992-),女,硕士,工程师,主要研究方向为遥感技术应用及期刊编辑。Email: zhangxrs@163.com
引用本文:   
张仙, 李伟, 陈理, 杨昭颖, 窦宝成, 李瑜, 陈昊旻. 露天开采矿区要素遥感提取研究进展及展望[J]. 自然资源遥感, 2023, 35(2): 25-33.
ZHANG Xian, LI Wei, CHEN Li, YANG Zhaoying, DOU Baocheng, LI Yu, CHEN Haomin. Research progress and prospect of remote sensing-based feature extraction of opencast mining areas. Remote Sensing for Natural Resources, 2023, 35(2): 25-33.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2022141      或      https://www.gtzyyg.com/CN/Y2023/V35/I2/25
序号 一级类别 二级类别
1 采矿区 露天采场、集水坑等
2 中转场地 矿石堆、选矿场、洗矿场等
3 尾矿区 排土场、废石堆、尾矿库等
4 矿山建筑物 选矿厂、冶炼厂等
5 地质灾害 采矿沉陷、地裂缝、崩塌、滑坡、泥石流等
6 矿山环境 道路、植被、水体、裸土等
Tab.1  露天开采矿区要素类别
[1] 李志成, 夏阳. 露天开采[M]. 昆明: 云南大学出版社, 2009.
Li Z C, Xia Y. Opencast mining[M]. Kunming: Yunnan University Press, 2009.
[2] 李恒凯, 熊云飞, 吴立新. 面向对象的离子吸附型稀土矿开采高分遥感影像识别方法[J]. 稀土, 2017, 38(4):38-49.
Li H K, Xiong Y F, Wu L X. The object-oriented recognition method for remote sensing image with high spatial resolution for iron rare earth mining[J]. Chinese Rare Earths, 2017, 38(4):38-49.
[3] Kopec A, Trybała P, Głabicki D, et al. Application of remote sensing,GIS and machine learning with geographically weighted regression in assessing the impact of hard coal mining on the natural environment[J]. Sustainability, 2020(12):9338.
[4] 彭燕, 何国金, 曹辉. 基于纹理的面向对象分类的稀土矿开采地信息提取[J]. 科学技术与工程, 2013, 13(19):5590-5596.
Peng Y, He G J, Cao H. Extraction of rare earth mining areas using objects-oriented classification approach based on texture characteristics[J]. Science Technology and Engineering, 2013, 13(19):5590-5596.
[5] 张峰极, 吴艳兰, 姚雪东, 等. 基于改进DenseNet 网络的多源遥感影像露天开采区智能提取方法[J]. 遥感技术与应用, 2020, 35(3):673-684.
Zhang F J, Wu Y L, Yao X D, et al. Opencast mining area intelligent extraction method for multi-source remote sensing image based on improved DenseNet[J]. Remote Sensing Technology and Application, 2020, 35(3):673-684.
[6] 代晶晶, 吴亚楠, 王登红, 等. 基于面向对象分类的稀土开采区遥感信息提取方法研究[J]. 地球学报, 2018, 39(1):111-118.
Dai J J, Wu Y N, Wang D H, et al. object-oriented classification for the extraction of remote sensing information in rare earth mining areas[J]. Acta Geoscientica Sinica, 2018, 39(1):111-118.
[7] 刘家兴, 隋翔宇, 包妮沙, 等. Google Earth Engine平台支持下的铁矿区开采及植被变化遥感动态监测[J]. 矿山测量, 2020, 48(6):43-48.
Liu J X, Sui X Y, Bao N S, et al. Dynamic monitoring using remote sensing technology for iron mining area and vegetation change detection based on Google Earth Engine platform[J]. Mine Surveying, 2020, 48(6):43-48.
[8] 闫凯, 沈汀, 陈正超, 等. 基于深度学习的SSD模型尾矿库自动提取[J]. 中国科学院大学学报, 2020, 37(3):360-367.
doi: 10.7523/j.issn.2095-6134.2020.03.009
Yan K, Shen T, Chen Z C, et al. Automatic extraction of tailing pond based on SSD of deep learning[J] Journal of University of Chinese Academy of Sciences, 2020, 37(3):360-367.
doi: 10.7523/j.issn.2095-6134.2020.03.009
[9] Ma B D, Chen Y T, Zhang S, et al. Remote sensing extraction method of tailings ponds in ultra-low-grade iron mining area based on spectral characteristics and texture entropy[J]. Entropy, 2018, 20(5):345.
doi: 10.3390/e20050345
[10] Lyu J J, Hu Y, Ren S L, et al. Extracting the tailings ponds from high spatial resolution remote sensing images by integrating a deep learning-based model[J]. Remote Sensing, 2021, 13(4):743.
doi: 10.3390/rs13040743
[11] 曾发明, 杨波, 吴德文, 等. 基于Canny 边缘检测算子的矿区道路提取[J]. 国土资源遥感, 2013, 25(4):72 -78.doi:10.6046/gtzyyg.2013.04.12.
doi: 10.6046/gtzyyg.2013.04.12
Zeng F M, Yang B, Wu D W, et al. Extraction of roads in mining area based on Canny edge detection operator[J]. Remote Sensing for Land and Resources, 2013, 25(4):72 -78.doi:10.6046/gtzyyg.2013.04.12.
doi: 10.6046/gtzyyg.2013.04.12
[12] 林卉, 朱庆, 胡召玲. 模糊支持向量机和变化矢量分析相结合的矿区土地覆盖变化检测[J]. 测绘通报, 2014(11) :25-27.
Lin H, Zhu Q, Hu Z L. Land cover change detection based on mixed dynamic monitoring method in mining area[J]. Bulletin of Surveying and Mapping, 2014(11) :25-27.
doi: 10.13474/j.cnki.11-2246.2014.0355
[13] 朱彦光. 基于词包模型的地表矿山要素遥感信息提取方法研究[D]. 长沙: 湖南师范大学, 2016.
Zhu Y G. Remote sensing information extraction for elements of surface mine based on bag-of-word model[D]. Changsha: Hunan Normal University, 2016.
[14] 钟静. 锡林浩特露天开采煤矿区占地信息自动提取方法研究[D]. 北京: 中国地质大学(北京), 2016.
Zhong J. Research on information automatically extract method of surface coal mining in Xilinhot[D]. Beijing: China University of Geosciences (Beijing), 2016.
[15] 王海庆, 李丽, 陈玲, 等. 基于尾矿库调查的西藏自治区金属矿开采强度分析[J]. 国土资源遥感, 2019, 31(2):218-223.doi:10.6046/gtzyyg.2019.02.30.
doi: 10.6046/gtzyyg.2019.02.30
Wang H Q, Li L, Chen L, et al. An analysis of mining intensity about metal mines based on investigation of tailing reservoirs in Tibet[J]. Remote Sensing for Land and Resources, 2019, 31(2):218-223.doi:10.6046/gtzyyg.2019.02.30.
doi: 10.6046/gtzyyg.2019.02.30
[16] 廖振威, 韦银科, 陈鹏. 遥感技术在南天山-昆仑山地区矿山开发占地调查中的应用[J]. 低碳技术, 2019(1):66-67.
Liao Z W, Wei Y K, Chen P. Application of remote sensing technology in the investigation of mine development land occupation in South Tianshan Kunlun Mountain area[J]. Low Carbon Technology, 2019(1):66-67.
[17] Azeez A H A, Mukhitdinov S. Land use land cover change detection in the mining areas of V.D. Yalevsky coal mine-Russia[C]// VIII International Scientific Conference “Problems of Complex Development of Georesources”.E3S Web of Conferences, 2020, 192:04021.
[18] 范莹琳, 娄德波, 张长青, 等. 基于面向对象的铁尾矿信息提取技术研究——以迁西地区北京二号遥感影像为例[J]. 自然资源遥感, 2021, 33(4):153-161.doi:10.6046/zrzyyg.2021027.
doi: 10.6046/zrzyyg.2021027
Fan Y L, Lou D B, Zhang C Q, et al. Information extraction technologies of iron mine tailings based on object-oriented classification:A case study of Beijing-2 remote sensing images of the Qianxi area,Hebei Province[J]. Remote Sensing for Natural Resources, 2021, 33(4):153-161.doi:10.6046/zrzyyg.2021027.
doi: 10.6046/zrzyyg.2021027
[19] Wu B, Zhao Y D, Fang C Y. Detection of spatiotemporal changes of surface mining area in Changting Count Southeast China[C]// International Geoscience and Remote Sensing Symposium.IEEE, 2019:1606-1609.
[20] 蔡祥, 李琦, 罗言, 等. 面向对象结合深度学习方法的矿区地物提取[J]. 国土资源遥感, 2021, 33(1):63-71.doi:10.6046/gtzyyg.2020111.
doi: 10.6046/gtzyyg.2020111
Cai X, Li Q, Luo Y, et al. Surface features extraction of mining area image based on object-oriented and deep-learning method[J]. Remote Sensing for Land and Resources, 2021, 33(1):63-71.doi:10.6046/gtzyyg.2020111.
doi: 10.6046/gtzyyg.2020111
[21] 张成业, 邢江河, 李军, 等. 基于U-Net网络和GF-6影像的尾矿库空间范围识别[J]. 自然资源遥感, 2021, 33(4):252-257.doi:10.6046/zrzyyg.2021017.
doi: 10.6046/zrzyyg.2021017
Zhang C Y, Xing J H, Li J, et al. Recognition of the spatial scopes of tailing ponds based on U-Net and GF-6 images[J]. Remote Sensing for Natural Resources, 2021, 33(4):252-257.doi:10.6046/zrzyyg.2021017.
doi: 10.6046/zrzyyg.2021017
[22] 张昆仑, 常玉光, 潘洁, 等. 基于MTBNet的唐山尾矿库提取[J]. 河南理工大学学报(自然科学版), 2022, 41(4):65-71,94.
Zhang K L, Chang Y G, Pan J, et al. MTBNet for tailing pond of Tangshan City[J]. Journal of Henan Polytechnic University (Natural Science), 2022, 41(4):65-71,94.
[23] 中国国家标准化管理委员会. GB/T 21010—2017 土地利用现状分类[S]. 北京: 中国标准出版社, 2017.
Standardization Administration of the People’s Republic of China. GB/T 21010—2017 current land use classification[S]. Beijing: China Standards Publishing House, 2017.
[24] Gallwey J, Robiati C, Coggan J, et al. A Sentinel-2 based multispectral convolutional neural network for detecting artisanal small-scale mining in Ghana:Applying deep learning to shallow mining[J]. Remote Sensing of Environment, 2020, 248:111970.
doi: 10.1016/j.rse.2020.111970
[25] 张云英. 基于GF-1遥感影像矿区的信息提取与建模[D]. 唐山: 华北理工大学, 2016.
Zhang Y Y. Remote sensing image based on GF-1 mining area of information extraction and modeling[D]. Tangshan: North China University of Science and Technology, 2016.
[26] 程璐. 面向对象结合支持向量机(SVM)在露天矿区信息提取中的应用研究[D]. 青海: 青海大学, 2017.
Cheng L. Application of object-oriented combined SVM in information extraction of open-pit mine[D]. Qinghai: Qinghai University, 2017.
[27] 宋启帆, 王少军, 张志, 等. 基于WorldView II 图像的钨矿区水体信息提取方法研究——以江西大余县为例[J]. 国土资源遥感, 2011, 23(2):33-37.doi:10.6046/gtzyyg.2011.02.06.
doi: 10.6046/gtzyyg.2011.02.06
Song Q F, Wang S J, Zhang Z, et al. A water information extraction method based on WorldView II remote sensing image in Tungsten ore districts:A case study of of Dayu County in Jiangxi Province[J]. Remote Sensing for Land and Resources, 2011, 23(2):33-37.doi:10.6046/gtzyyg.2011.02.06.
doi: 10.6046/gtzyyg.2011.02.06
[28] 李鹏飞, 郭小平, 顾清敏, 等. 基于可见光植被指数的乌海市矿山排土场坡面植被覆盖信息提取研究[J]. 北京林业大学学报, 2020, 42(6):102-112.
Li P F, Guo X P, Gu Q M, et al. Vegetation coverage information extraction of mine dump slope in Wuhai City of Inner Mongolia based on visible vegetation index[J]. Journal of Beijing Forestry University, 2020, 42(6):102-112.
[29] Xiang J, Chen J P, Sofia G, et al. Open-pit mine geomorphic changes analysis using multi-temporal UAV survey[J]. Environmental Earth Sciences, 2018, 77:220.
doi: 10.1007/s12665-018-7383-9
[30] 卢遥, 卢小平, 顾行发, 等. 基于LiDAR与GeoEye的煤矿区典型地物协同提取[C]// 中国测绘地理信息学会2014年学术年会, 2014.
Lu Y, Lu X P, Gu X F, et al. Typical surface features extraction in mining area based on data of LiDAR and GeoEye[C]// 2014 Annual Academic Meeting of China Society of Surveying and Mapping Geographic Information, 2014.
[31] 卢遥, 卢小平, 武永斌, 等. 综合机载LiDAR与高分影像的煤矿区典型地物提取方法[J]. 测绘通报, 2015(12):57-59.
doi: 10.13474/j.cnki.11-2246.2015.378
Lu Y, Lu X P, Wu Y B, et al. Typical surface features extraction in mining area based on data of LiDAR and WorldView-2[J]. Bulletin of Surveying and Mapping, 2015(12):57-59.
doi: 10.13474/j.cnki.11-2246.2015.378
[32] Nascimento F S, Gastauer M, Souza-Filhob P W M, et al. Land cover changes in open-cast mining complexes based on high-resolution remote sensing data[J]. Remote Sensing, 2020, 12(4):611.
doi: 10.3390/rs12040611
[33] 方军. 融合LiDAR点云与影像数据的矿区建筑物提取研究[M]. 西安: 西安交通大学出版社, 2019.
Fang J. Research on building extraction in mine area based on LiDAR point cloud data and imageries[M]. Xi’an: Xi’an Jiaotong University Press, 2019.
[34] 杨显华, 魏鹏, 吕军, 等. 基于多源遥感的采空塌陷识别技术应用研究[J]. 自然资源遥感, 2022, 34(2):162-167.doi:10.6046/zrzyyg.2021195.
doi: 10.6046/zrzyyg.2021195
Yang X H, Wei P, Lyu J, et al. Application of mining collapse recognition technology based on multi-source remote sensing[J]. Remote Sensing for Natural Resources, 2022, 34(2):162-167.doi:10.6046/zrzyyg.2021195.
doi: 10.6046/zrzyyg.2021195
[35] 许凯, 解加粉, 王运发, 等. 基于DInSAR和DCNN的矿区分布信息提取方法及系统:中国,201811528248.X[P]. 2019-04-02.
Xu K, Xie J F, Wang Y F, et al. An extraction method and system of distribution information of mining area based on DInSAR and DCNN:China, 201811528248.X[P]. 2019-04-02.
[36] 牟晓莉, 李贺, 黄翀, 等. Google Earth Engine在土地覆被遥感信息提取中的研究进展[J]. 国土资源遥感, 2021, 33(2):1-10.doi:10.6046/gtzyyg.2020189.
doi: 10.6046/gtzyyg.2020189
Mou X L, Li H, Huang C, et al. Application progress of Google Earth Engine in land use and land cover remote sensing information extraction[J]. Remote Sensing for Land and Resources, 2021, 33(2):1-10.doi:10.6046/gtzyyg.2020189.
doi: 10.6046/gtzyyg.2020189
[37] Kumar L, Mutanga O. Google Earth Engine applications since inception:Usage,trends,and potential[J]. Remote Sensing, 2018, 10(10):1509.
doi: 10.3390/rs10101509
[38] Felipe de L L, Pedro W M S, Evlyn M L de M N, et al. Mapping mining areas in the Brazilian Amazon using MSI/Sentinel-2 imagery (2017)[J]. Remote Sensing, 2018, 10:1178.
doi: 10.3390/rs10081178
[39] 高永志, 侯建国, 初禹, 等. 基于最新国产卫星数据的尾矿库遥感监测[J]. 黑龙江工程学院学报, 2019, 33(3):26-29.
Gao Y Z, Hou J G, Chu Y, et al. Remote Sensing monitoring of tailings ponds based on the latest domestic satellite data[J]. Journal of Heilongjiang Institute of Technology, 2019, 33(3):26-29.
[40] 龙亦凡, 乔雯钰, 孙静. 基于SVM的大屯矿区遥感影像变化检测[J]. 测绘与地理空间信息, 2020, 43(12):107-110.
Long Y F, Qiao W Y, Sun J. Change detection of remote sensing images in Datun mining area based on support vector machine[J]. Geomatics & Spatial Information Technology, 2020, 43(12):107-110.
[41] Laura J S, Chris J M, Damian J B, et al. Processes of land use change in mining regions[J]. Journal of Cleaner Production, 2014(84):494-501.
[42] 刘雪龙. 面向对象的遥感影像工业固体废物信息提取方法研究[D]. 北京: 中国地质大学(北京), 2013.
Liu X L. Research on object-oriented remote sensing images industrial solid waste information extraction method[D]. Beijing: China University of Geosciences (Beijing), 2013.
[43] 黄丹, 刘庆生, 刘高焕, 等. 面向对象的煤矸石堆场SPOT-5 影像识别[J]. 地球信息科学学报, 2015, 17(3):369-377.
doi: 10.3724/SP.J.1047.2015.00369
Huang D, Liu Q S, Liu G H, et al. Coal gangue yards information extraction using object-oriented method based on SPOT-5 remote sensing images[J]. Journal of Geo-information Science, 2015, 17(3):369-377.
[44] 霍光杰, 胡乃勋, 陈涛, 等. 融合支持向量机和面向对象方法的矿区土地利用信息提取[J]. 河南理工大学学报(自然科学版), 2021, 40(2):70-75.
Huo G J, Hu N X, Chen T, et al. Mining land use information extraction based on combining support vector machine and object oriented method[J]. Journal of Henan Polytechnic University(Nature Science), 2021, 40(2):70-75.
[45] 彭燕, 张兆明, 何国金. 一种视觉注意模型驱动的稀土矿区遥感信息智能提取方法:中国, 201910317994.2[P]. 2019-07-26.
Peng Y, Zhang Z M, He G J. A method of extraction of remote sensing information in rare earth mining areas driven by visual attention model:China,201910317994.2[P]. 2019-07-26
[46] Hinton G, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets[J]. Eural Computation, 2006, 18(7):1527-1554.
[47] 郑远攀, 李广阳, 李晔. 深度学习在图像识别中的应用研究综述[J]. 计算机工程与应用, 2019, 55(12):20-36.
doi: 10.3778/j.issn.1002-8331.1903-0031
Zheng Y P, Li G Y, Li Y. Survey of application of deep learning in image recognition[J]. Computer Engineering and Applications, 2019, 55(12):20-36.
doi: 10.3778/j.issn.1002-8331.1903-0031
[48] 邝辉宇, 吴俊君. 基于深度学习的图像语义分割技术研究综述[J]. 计算机工程与应用, 2019, 55(19):12-21.
doi: 10.3778/j.issn.1002-8331.1905-0325
Kuang H Y, Wu J J. Survey of image semantic segmentation based on deep learning[J]. Computer Engineering and Applications, 2019, 55(19):12-21.
doi: 10.3778/j.issn.1002-8331.1905-0325
[49] 苏丽, 孙雨鑫, 苑守正. 基于深度学习的实例分割研究综述[J]. 智能系统学报, 2022, 17(1):16-31.
Su L, Sun Y X, Yuan S Z. A survey of instance segmentation research based on deep learning[J]. CAAI Transactions on Intelligent Systems, 2022, 17(1):16-31.
[50] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015:3431-3440.
[51] Girshick R, Donahue J, Darrell T, et al. Region-based convolutional networks for accurate object detection and segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(1):142-158.
doi: 10.1109/TPAMI.2015.2437384 pmid: 26656583
[52] 向阳, 赵银娣, 董霁红. 基于改进UNet 孪生网络的遥感影像矿区变化检测[J]. 煤炭学报, 2019, 44(12):3773-3780.
Xiang Y, Zhao Y D, Dong J H. Remote sensing image mining area change detection based on improved UNet siamese network[J]. Journal of China Coal Society, 2019, 44(12):3773-3780.
[53] 宋仁忠, 郑慧玉, 王党朝, 等. 基于深度学习和高分辨率遥感影像的露天矿地物分类方法[J]. 中国矿业, 2022, 31(7):102-111.
Song R Z, Zheng H Y, Wang D C, et al. Classification of features in open-pit mining areas based on deep learning and high resolution remote sensing images[J]. China Mining Magazine, 2022, 31(7):102-111.
[54] 张峰极. 多源遥感影像露天开采区深度学习提取方法研究[D]. 合肥: 安徽大学, 2019.
Zhang F J. Research on deep learning extraction method in open mining area based on multi-source remote sensing image[D]. Hefei: Anhui University, 2019.
[55] 董畅. 露天煤矿区的高分遥感图像多标签分类[D]. 徐州: 中国矿业大学, 2020.
Dong C. Multi-label classification of high-resolution remote sensing image in opencast coal mines[D]. Xuzhou: China University of Mining and Technology, 2020.
[56] 刘小波, 刘鹏, 蔡之华, 等. 基于深度学习的光学遥感图像目标检测研究进展[J]. 自动化学报, 2021, 47(9):2078-2089.
Liu X B, Liu P, Cai Z H, et al. Research progress of optical remote sensing image object detection based on deep learning[J]. Acta Automatica Sinica, 2021, 47(9):2078-2089.
[1] 牛祥华, 黄微, 黄睿, 蒋斯立. 基于注意力特征融合的高保真遥感图像薄云去除[J]. 自然资源遥感, 2023, 35(3): 116-123.
[2] 刘立, 董先敏, 刘娟. 顾及地学特征的遥感影像语义分割模型性能评价方法[J]. 自然资源遥感, 2023, 35(3): 80-87.
[3] 邱磊, 张学志, 郝大为. 基于深度学习的视频SAR动目标检测与跟踪算法[J]. 自然资源遥感, 2023, 35(2): 157-166.
[4] 刁明光, 刘勇, 郭宁博, 李文吉, 江继康, 王云霄. 基于Mask R-CNN的遥感影像疏林地智能识别方法[J]. 自然资源遥感, 2023, 35(2): 97-104.
[5] 张可, 张庚生, 王宁, 温静, 李宇, 杨俊. 基于遥感和深度学习的输电线路地表水深预测[J]. 自然资源遥感, 2023, 35(1): 213-221.
[6] 胡建文, 汪泽平, 胡佩. 基于深度学习的空谱遥感图像融合综述[J]. 自然资源遥感, 2023, 35(1): 1-14.
[7] 赵凌虎, 袁希平, 甘淑, 胡琳, 丘鸣语. 改进Deeplabv3+的高分辨率遥感影像道路提取模型[J]. 自然资源遥感, 2023, 35(1): 107-114.
[8] 吕雅楠, 朱红, 孟健, 崔成玲, 宋其淇. 面向高分辨率遥感影像车辆检测的深度学习模型综述及适应性研究[J]. 自然资源遥感, 2022, 34(4): 22-32.
[9] 谭海, 张荣军, 樊文锋, 张一帆, 徐航. 融合多尺度特征的国产光学影像辐射异常分类检测[J]. 自然资源遥感, 2022, 34(4): 97-104.
[10] 苏玮, 林阳阳, 岳文, 陈颖彪. 基于U-Net卷积神经网络的广东省海水养殖区识别及其时空变化遥感监测[J]. 自然资源遥感, 2022, 34(4): 33-41.
[11] 张鹏强, 高奎亮, 刘冰, 谭熊. 联合空谱信息的高光谱影像深度Transformer网络分类[J]. 自然资源遥感, 2022, 34(3): 27-32.
[12] 王华俊, 葛小三. 一种轻量级的DeepLabv3+遥感影像建筑物提取方法[J]. 自然资源遥感, 2022, 34(2): 128-135.
[13] 伊尔潘·艾尼瓦尔, 买买提·沙吾提, 买合木提·巴拉提. 基于GF-2影像和Unet模型的棉花分布识别[J]. 自然资源遥感, 2022, 34(2): 242-250.
[14] 孙宇, 黄亮, 赵俊三, 常军, 陈朋弟, 成飞飞. 结合随机擦除和YOLOv4的高空间分辨率遥感影像桥梁自动检测[J]. 自然资源遥感, 2022, 34(2): 97-104.
[15] 薛白, 王懿哲, 刘书含, 岳明宇, 王艺颖, 赵世湖. 基于孪生注意力网络的高分辨率遥感影像变化检测[J]. 自然资源遥感, 2022, 34(1): 61-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发