Please wait a minute...
 
自然资源遥感  2023, Vol. 35 Issue (2): 70-79    DOI: 10.6046/zrzyyg.2022207
  海岸带空间资源及生态健康遥感监测专栏 本期目录 | 过刊浏览 | 高级检索 |
基于Landsat8遥感数据的西沙群岛永乐环礁底质分类与变化分析
李天驰1(), 王道儒2, 赵亮1(), 凡仁福2
1.天津科技大学海洋与环境学院,天津 300457
2.海南省海洋与渔业科学院,海口 571126
Classification and change analysis of the substrate of the Yongle Atoll in the Xisha Islands based on Landsat8 remote sensing data
LI Tianchi1(), WANG Daoru2, ZHAO Liang1(), FAN Renfu2
1. College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin 300457, China
2. Hainan Academy of Ocean and Fisheries Sciences, Haikou 571126, China
全文: PDF(4089 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

在海-气环境变化剧烈的今日,准确高效地实现珊瑚礁底质信息识别是进行珊瑚礁动态监测研究的基础。文章获取了2013—2021年4个时期西沙群岛永乐环礁的Landsat8卫星数据,结合不同底质的光谱和纹理差异,提出了一种基于光谱纹理指数的决策树分类模型,采用面向对象和基于像元的分类方法进行珊瑚信息提取,并定量统计了永乐环礁底质变化情况。结果表明: 面向对象的分类结果整体上优于基于像素的分类结果,且决策树分类结果的Kappa系数在0.631~0.681范围,分类精度高于传统监督分类精度约7~10个百分点; 珊瑚丛生带大多分布在岛礁的中部水动力较弱区域,除银屿和金银岛上的珊瑚呈面状分布外,其他岛礁上的珊瑚多呈带状分布; 总体时段内永乐环礁的珊瑚丛生带和沙洲面积变化显著,虽然珊瑚丛生带的总面积增加了1.689 km2,但石屿、晋卿岛、全富岛、珊瑚岛和羚羊礁的珊瑚丛生带退化情况严重,其面积减少了0.107~0.892 km2不等。该文证明了利用中等空间分辨率影像建立的底质指数是可靠的,可应用于珊瑚遥感信息提取,能够为珊瑚礁资源调查及科学管理提供技术支持。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李天驰
王道儒
赵亮
凡仁福
关键词 遥感永乐环礁光谱特征决策树面向对象分类    
Abstract

In view of the drastic changes in the ocean-atmosphere environment, the accurate and efficient identification of coral reef substrate information is essential for the dynamic monitoring of coral reefs. Based on the Landsat8 satellite data of the Yongle Atoll in the Xisha Islands of four periods during 2013—2021, this study proposed a decision tree classification model using spectral and texture indices according to the spectral and texture differences between different substrates. Then, the coral information was extracted using object-oriented and pixel-based classification methods. In addition, the changes in the substrate of the Yongle Atoll were quantitatively analyzed. The results are as follows: ① The results of the object-oriented classification are superior to those of pixel-based classification overall. Moreover, the decision tree classification results yielded Kappa coefficients of 0.63~0.68, with classification accuracy about 7~10 percentage points higher than that of conventional supervised classification; ② Coral thickets are mostly distributed in the central, weakly-hydrodynamic parts of islands and reefs. The corals in the Yinyu Reef and the Jinyin Island exhibit a planar distribution pattern, while those in other islands and reefs mostly show a zonal distribution pattern; ③ The areas of coral thickets and sandbanks in the Yongle Atoll changed significantly overall. Although the total area of coral thickets increased by 1.689 km2, the coral thickets in the Shiyu, Jinqing, Quanfu, and Shanhu islands and the Lingyang reef were severely degraded, with areas decreasing by 0.107~0.892 km2. This study verified that the substrate index established using medium spatial resolution images is reliable and can be applied to remote sensing information extraction of corals. Therefore, this study will provide technical support for the investigation and scientific management of coral reef resources.

Key wordsremote sensing    Yongle Atoll    spectral characteristics    decision tree    object-oriented classification
收稿日期: 2022-05-20      出版日期: 2023-07-07
ZTFLH:  TP79  
基金资助:工信部项目[2019]357号;国家自然科学基金项目“黄、东海二甲基硫海气通量季节和年际变化及机制的模型研究”(41876018);“波浪和潮汐影响下珊瑚环礁潟湖内湍流特征的原位观测与分析”(42106026);2021年天津科技大学研究生科研创新项目“南海西沙群岛珊瑚分布特征及白化风险评估”(YJSKC2021S43)
通讯作者: 赵 亮(1975-),男,博士,教授,主要从事浅海动力学、海洋生态动力学研究。Email: zhaoliang@tust.edu.cn
作者简介: 李天驰(2000-),男,硕士研究生,主要从事海洋生态遥感研究。Email: litianchi@mail.tust.edu.cn
引用本文:   
李天驰, 王道儒, 赵亮, 凡仁福. 基于Landsat8遥感数据的西沙群岛永乐环礁底质分类与变化分析[J]. 自然资源遥感, 2023, 35(2): 70-79.
LI Tianchi, WANG Daoru, ZHAO Liang, FAN Renfu. Classification and change analysis of the substrate of the Yongle Atoll in the Xisha Islands based on Landsat8 remote sensing data. Remote Sensing for Natural Resources, 2023, 35(2): 70-79.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2022207      或      https://www.gtzyyg.com/CN/Y2023/V35/I2/70
Fig.1  研究区位置示意图
底质类型 描述 遥感影像 底质类型 描述 遥感影像
珊瑚丛生带 大多位于岛礁中部,活珊瑚覆盖度较高,颜色呈棕褐色,面状或条带状分布 点礁 蓝绿色斑块,相互独立且呈点状分布
礁坪 礁体大部分区域,覆盖大量生物碎屑,同时还有不同种类的沉积物 礁前斜坡 位于礁体四周,是礁体边缘向外海延伸的水下斜坡,因其中有珊瑚生长呈现较亮的浅蓝色
沙洲 由沙质碎屑组成,一般还可能包含白化死亡的珊瑚,色调明亮 建筑和植被 与珊瑚礁其他底质区别明显,建筑以沙质为主呈黄白色,植被呈绿色
Tab.1  研究区珊瑚礁底质类型分类体系
Fig.2  珊瑚礁各底质光谱特征曲线
Fig.3  不同底质的绿光波段纹理特征值
Fig.4  珊瑚礁各底质均值纹理特征曲线
Fig.5  珊瑚礁底质分类决策树
Fig.6  ROCLV在不同尺度下变化曲线
Fig.7  面向对象分类与基于像元分类结果对比
底质类型 面向对象 基于像元
决策树分类 SVM KNN 决策树分类 SVM MDC
UA/% PA/% UA/% PA/% UA/% PA/% UA/% PA/% UA/% PA/% UA/% PA/%
礁坪 83.79 75.17 87.83 70.46 85.42 71.01 77.56 76.75 87.47 72.60 84.41 61.78
礁前斜坡 86.69 83.56 84.97 72.95 81.92 74.70 86.43 79.39 72.92 85.92 85.72 72.97
点礁 74.34 75.02 44.08 73.04 42.98 57.32 71.27 67.51 38.61 70.04 45.37 51.93
建筑和植被 91.35 71.84 84.32 75.76 83.47 75.97 90.34 69.28 85.06 78.06 83.96 78.87
沙洲 71.84 69.16 67.75 68.01 66.36 67.34 56.22 62.09 60.23 78.42 43.46 77.72
珊瑚丛生带 47.15 74.43 40.53 71.75 38.11 67.65 42.57 59.24 39.58 64.14 28.54 66.22
OA/% 77.33 71.69 70.64 74.25 71.14 66.07
Kappa系数 0.681 0.614 0.595 0.631 0.594 0.541
Tab.2  不同分类方法精度对比
Fig.8  不同时期珊瑚礁分类结果
底质类型 2013年 2015年 2018年 2021年
礁坪 40.295 39.842 38.531 37.284
礁前斜坡 29.909 29.541 28.891 28.378
点礁 6.415 6.647 6.786 6.617
建筑和植被 2.890 3.165 2.900 2.913
沙洲 2.413 3.206 2.399 2.736
珊瑚丛生带 5.775 4.073 6.993 7.464
Tab.3  研究区域各时段底质面积变化
Fig.9  部分岛屿珊瑚丛生带变化情况
[1] 赵美霞, 余克服, 张乔民. 珊瑚礁区的生物多样性及其生态功能[J]. 生态学报, 2006, 26(1):186-194.
Zhao M X, Yu K F, Zhang Q M. Review on coral reefs biodiversity and ecological function[J]. Acta Ecologica Sinica, 2006, 26(1):186-194.
[2] Couce E, Ridgwell A, Hendy E J. Environmental controls on the global distribution of shallow-water coral reefs[J]. Journal of Biogeography, 2012, 39(8):1508-1523.
doi: 10.1111/jbi.2012.39.issue-8
[3] 余克服. 南海珊瑚礁及其对全新世环境变化的记录与响应[J]. 中国科学:地球科学, 2012, 42(8):1160-1172.
Yu K F. Coral reefs in the South China Sea:Their response to and records on past environmental changes[J]. Science China Earth Science, 2012, 42(8):1160-1172.
[4] 张君珏, 苏奋振, 王雯玥. 南海资源环境地理研究综述[J]. 地理科学进展, 2018, 37(11):1443-1453.
doi: 10.18306/dlkxjz.2018.11.001
Zhang J J, Su Z F, Wang W Y. A review of geographical information research on resources and environment of the South China Sea region[J]. Progress in Geography, 2018, 37(11):1443-1453.
doi: 10.18306/dlkxjz.2018.11.001
[5] 王丽荣, 余克服, 赵焕庭, 等. 南海珊瑚礁经济价值评估[J]. 热带地理, 2014, 34(1):44-49.
Wang L R, Yu K F, Zhao H T, et al. Economic valuation of the coral reefs in South China Sea[J]. Tropical Geography, 2014, 34(1):44-49.
[6] 黄晖. 中国珊瑚礁状况报告(2010— 2019)[M]. 北京: 海洋出版社, 2021:9.
Huang H. Status of coral reefs in China(2010— 2019)[M]. Beijing: China Ocean Press, 2021:9.
[7] 李元超, 陈石泉, 郑新庆, 等. 永兴岛及七连屿造礁石珊瑚近10年变化分析[J]. 海洋学报, 2018, 40(8):97-109.
Li Y C, Chen S Q, Zheng X Q, et al. Analysis of the change of hermatypic corals in Yongxing Island and Qilianyu Island in nearly a decade[J]. Haiyang Xuebao, 2018, 40(8):97-109.
[8] 黄荣永, 余克服, 王英辉, 等. 珊瑚礁遥感研究进展[J]. 遥感学报, 2019, 23(6):1091-1112.
Huang R Y, Yu K F, Wang Y H, et al. Progress of the study on coral reef remote sensing[J]. Journal of Remote Sensing, 2019, 23(6):1091-1112.
[9] da Silveira C B L Strenzel G M R, Maida M, et al. Coral reef mapping with remote sensing and machine learning:A nurture and nature analysis in marine protected areas[J]. Remote Sensing, 2021, 13(15):2907-2931.
doi: 10.3390/rs13152907
[10] 逄今朝, 任广波, 施祺, 等. 基于底质类型变化监测的2005—2018年西沙永乐群岛珊瑚礁白化分析[J]. 海洋科学, 2021, 45(6):92-106.
Pang J Z, Ren G B, Shi Q, et al. Analysis of coral reef bleaching in Yongle Islands of Xisha from 2005 to 2018 based on sediment types change monitoring[J]. Marine Sciences, 2021, 45(6):92-106.
[11] 左秀玲, 苏奋振, 赵焕庭, 等. 南海珊瑚礁高分辨率遥感地貌分类体系研究[J]. 地理科学进展, 2018, 37(11):1463-1472.
doi: 10.18306/dlkxjz.2018.11.003
Zuo X L, Su F Z, Zhao H T, et al. Development of a geomorphic classification scheme for coral reefs in the South China Sea based on high-resolution satellite images[J]. Progress in Geography, 2018, 37(11):1463-1472.
doi: 10.18306/dlkxjz.2018.11.003
[12] 初庆伟, 张洪群, 吴业炜, 等. Landsat8卫星数据应用探讨[J]. 遥感信息, 2013, 28(4):110-114.
Chu Q W, Zhang H Q, Wu Y W, et al. Application research of Landsat8[J]. Remote Sensing Information, 2013, 28(4):110-114.
[13] 李嘉琪, 白爱娟, 蔡亲波. 西沙群岛和涠洲岛气候变化特征及其与近岸陆地的对比[J]. 热带地理, 2018, 38(1):72-81.
doi: 10.13284/j.cnki.rddl.003003
Li J Q, Bai A J, Cai Q B. Climate change characteristics of the Xisha Islands and Weizhou Island in China and the comparison with the coastal land[J]. Tropical Geography, 2018, 38(1):72-81.
[14] 陶士臣, 张会领, 余克服, 等. 近500年西沙群岛海面温度年际变化的珊瑚记录及其环境意义[J]. 第四纪研究, 2021, 41(2):411-423.
Tao S C, Zhang H L, Yu K F, et al. Annual resolution sea surface temperature reconstructed quantitatively by porites coral growth rate in the Xishaqundao Islands during the past five centuries and their environmental significance[J]. Quaternary Sciences, 2021, 41(2):411-423.
[15] 李晓敏, 马毅, 吕喜玺. 南海珊瑚岛礁遥感分类体系和解译标志[J]. 海洋科学, 2021, 45(5):23-30.
Li X M, Ma Y, Lyu X X. Establishing a remote sensing classification system and interpretation marks for the coral islands and reefs in the South China Sea[J]. Marine Sciences, 2021, 45(5):23-30.
[16] 董娟, 任广波, 胡亚斌, 等. 基于高分辨率遥感的珊瑚礁地貌单元体系构建和分类方法——以8波段Worldview-2影像为例[J]. 热带海洋学报, 2020, 39(4):116-129.
doi: 10.11978/2019100
Dong J, Ren G B, Hu Y B, et al. Construction and classification of coral reef geomorphic unit system based on high-resolution remote sensing:Using 8-band Worldview-2 image as an example[J]. Journal of Tropical Oceanography, 2020, 39(4):116-129.
[17] Nimalan K, Thanikachalam M, Usha T. Spectral characteristics of coral reef benthic compositions in gulf of Mannar[J]. Journal of Earth System Science, 2021, 130(1):1-7.
doi: 10.1007/s12040-020-01500-2
[18] 徐京萍, 李方, 孟庆辉, 等. 基于野外实测数据的珊瑚礁不同底质光谱可分性及珊瑚色素影响分析[J]. 光谱学与光谱分析, 2019, 39(8):2462-2469.
Xu J P, Li F, Meng Q H, et al. The analysis of spectral separability of different coral reef benthos and the influence of pigments on coral spectra based on in situ data[J]. Spectroscopy and Spectral Analysis, 2019, 39(8):2462-2469.
[19] Zeng K, Xu Z, Yang Y, et al. In situ hyperspectral characteristics and the discriminative ability of remote sensing to coral species in the South China Sea[J]. GIScience and Remote Sensing, 2022, 59(1):272-294.
doi: 10.1080/15481603.2022.2026641
[20] Haralick R M, Shanmugam K, Dinstein I H. Textural features for image classification[J]. IEEE Transactions on Systems,Man,and Cybernetics, 1973, SMC-3(6):610-621.
doi: 10.1109/TSMC.1973.4309314
[21] 潘琛, 杜培军, 张海荣. 决策树分类法及其在遥感图像处理中的应用[J]. 测绘科学, 2008, 33(1):208-211,253.
Pan C, Du P J, Zhang H R. Decision tree classification and its application in processing of remote sensing images[J]. Science of Surveying and Mapping, 2008, 33(1):208-211,253.
[22] 万佳馨, 任广波, 马毅. 基于WorldView-2和GF-2遥感影像的赵述岛礁坪底质变化研究[J]. 海洋科学, 2019, 43(10):43-54.
Wan J X, Ren G B, Ma Y. Study on substrate changes of Zhaoshu reef flat based on WorldView-2 and GF-2 remote sensing images[J]. Marine Sciences, 2019, 43(10):43-54.
[23] 索琳琳, 蔡玉林, 孙旋, 等. 基于Landsat8数据的西沙群岛珊瑚礁信息提取[J]. 中国科技论文, 2019, 14(3):347-352.
Suo L L, Cai Y L, Sun X, et al. Mapping coral reefs at Xisha Islands using Landsat8[J]. China Sciencepaper, 2019, 14(3):347-352.
[24] 徐涵秋. 利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J]. 遥感学报, 2005, 9(5):589-595.
Xu H Q. A study on information extraction of water body with the modified normalized difference water Index(MNDWI)[J]. Joural of Remote Sensing, 2005, 9(5):589-595.
[25] Curran P J. Multispectral Remote sensing for the estimation of green leaf area index[J]. Philosophical Transactions of the Royal Society of London.Series A,Mathematical and Physical Sciences, 1983, 309(1508):257-270.
[26] Drǎguţ L, Tiede D, Levick S R. ESP:A tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data[J]. International Journal of Geographical Information Science, 2010, 24(6):859-871.
doi: 10.1080/13658810903174803
[27] 赵英时. 遥感应用分析原理与方法[M]. 北京: 科学出版社, 2003:191-193.
Zhao Y S. Principles and methods of remote sensing application analysis[M]. Beijing: Science Press, 2003:191-193.
[28] 裴欢, 孙天娇, 王晓妍. 基于Landsat8 OLI影像纹理特征的面向对象土地利用/覆盖分类[J]. 农业工程学报, 2018, 34(2):248-255.
Pei H, Sun T J, Wang X Y. Object-oriented land use/cover classification based on texture features of Landsat8 OLI image[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(2):248-255.
[29] Lu C, Liu J, Jia M, et al. Dynamic analysis of mangrove forests based on an optimal segmentation scale model and multi-seasonal images in Quanzhou Bay,China[J]. Remote Sensing, 2018, 10(12):2020-2042.
doi: 10.3390/rs10122020
[30] Espindola G M, Câmara G, Reis I A, et al. Parameter selection for region-growing image segmentation algorithms using spatial autocorrelation[J]. International Journal of Remote Sensing, 2006, 27(14):3035-3040.
doi: 10.1080/01431160600617194
[1] 王建强, 邹朝晖, 刘荣波, 刘志松. 基于U2-Net深度学习模型的沿海水产养殖塘遥感信息提取[J]. 自然资源遥感, 2023, 35(3): 17-24.
[2] 王嘉芃, 徐建国, 沈家晓, 张登荣. 德兴铜矿矿山重金属污染修复效果高光谱遥感评价[J]. 自然资源遥感, 2023, 35(3): 284-291.
[3] 唐晖, 邹娟, 尹向红, 余姝辰, 贺秋华, 赵动, 邹聪, 罗建强. 基于高分遥感的洞庭湖区河湖采砂监管及典型案例分析[J]. 自然资源遥感, 2023, 35(3): 302-309.
[4] 于航, 安娜, 汪洁, 邢宇, 许文佳, 步凡, 王晓红, 杨金中. 黔西南采煤塌陷区高分遥感动态监测——以六盘水市煤矿采空塌陷区为例[J]. 自然资源遥感, 2023, 35(3): 310-318.
[5] 王静, 王佳, 徐江琪, 黄邵东, 刘东云. 改进遥感生态指数的典型海岸带城市生态环境质量评价——以湛江市为例[J]. 自然资源遥感, 2023, 35(3): 43-52.
[6] 徐欣钰, 李小军, 赵鹤婷, 盖钧飞. NSCT和PCNN相结合的遥感图像全色锐化算法[J]. 自然资源遥感, 2023, 35(3): 64-70.
[7] 刘立, 董先敏, 刘娟. 顾及地学特征的遥感影像语义分割模型性能评价方法[J]. 自然资源遥感, 2023, 35(3): 80-87.
[8] 牛祥华, 黄微, 黄睿, 蒋斯立. 基于注意力特征融合的高保真遥感图像薄云去除[J]. 自然资源遥感, 2023, 35(3): 116-123.
[9] 董婷, 符潍奇, 邵攀, 高利鹏, 武昌东. 基于改进全连接条件随机场的SAR影像变化检测[J]. 自然资源遥感, 2023, 35(3): 134-144.
[10] 郭晓萌, 方秀琴, 杨露露, 曹煜. 基于人工神经网络的西辽河流域根区土壤湿度估算[J]. 自然资源遥感, 2023, 35(2): 193-201.
[11] 方贺, 张育慧, 何月, 李正泉, 樊高峰, 徐栋, 张春阳, 贺忠华. 浙江省植被生态质量时空变化及其驱动因素分析[J]. 自然资源遥感, 2023, 35(2): 245-254.
[12] 张仙, 李伟, 陈理, 杨昭颖, 窦宝成, 李瑜, 陈昊旻. 露天开采矿区要素遥感提取研究进展及展望[J]. 自然资源遥感, 2023, 35(2): 25-33.
[13] 马世斌, 皮英楠, 王佳, 张焜, 李生辉, 彭玺. 基于遥感的绿色勘查高效监管方法体系研究[J]. 自然资源遥感, 2023, 35(2): 255-263.
[14] 王平. 热红外遥感技术在钢铁去产能监测中的应用[J]. 自然资源遥感, 2023, 35(2): 271-276.
[15] 石敏, 李慧颖, 贾明明. 基于GEE云平台与Landsat数据的山口自然保护区红树林时空变化分析[J]. 自然资源遥感, 2023, 35(2): 61-69.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发