Please wait a minute...
 
自然资源遥感  2024, Vol. 36 Issue (1): 179-188    DOI: 10.6046/zrzyyg.2022375
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
2010—2019年间洞庭湖流域生态环境状况时空动态特征及影响因素
李世杰(), 冯徽徽(), 王珍, 杨卓琳, 王姝
中南大学地球科学与信息物理学院,长沙 410083
Ecological environment in the Dongting Lake basin over the past decade: Spatio-temporal dynamic characteristics and their influencing factors from 2010 to 2019
LI Shijie(), FENG Huihui(), WANG Zhen, YANG Zhuolin, WANG Shu
School of Earth Science and Information Physics, Central South University, Changsha 410083, China
全文: PDF(8795 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

洞庭湖流域是长江中下游重要生态区,开展其生态环境状况定量监测与评价是进行区域生态保护、修复及治理的先决条件。该文采用2010—2019年MODIS遥感数据产品,基于绿度、湿度、干度和热度4个生态指标构建了洞庭湖流域遥感生态环境指数(remote sensing ecological index,RSEI),并在此基础上研究了流域生态环境状况时空动态特征及其影响因素。结果表明: ①2010—2019年洞庭湖流域绿度指标呈增长趋势,湿度指标呈下降趋势,而干度和热度指标变化较为平稳; ②洞庭湖流域整体生态环境状况较好,RSEI多年均值为0.58,并呈波动增长,空间上则表现为西部优于东部、四周优于中部的分布格局; ③降水、气温、高程以及土地覆盖与RSEI均具有较强相关性。其中,林地RSEI(0.65)最高,建筑用地RSEI(0.31)最低; 在流域2种主要土地转化类型中(草地→林地、耕地→草地),“草地→林地”转化有助于促进区域生态环境(ΔRSEI=0.002 5,贡献率为46.3%),而后者则有可能导致生态环境恶化(ΔRSEI=-0.000 4,贡献率为44.44%)。研究结果有助于深刻把握流域生态环境时空特征及其内在驱动机制,辅助开展科学的土地规划与生态环境治理,因而具有较强的理论与实践意义。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李世杰
冯徽徽
王珍
杨卓琳
王姝
关键词 遥感生态环境指数MODIS数据土地利用/覆盖变化洞庭湖流域    
Abstract

Since the Dongting Lake basin is a significant ecological zone in the middle and lower reaches of the Yangtze River, quantitative monitoring and evaluation of its ecological environment serve as a prerequisite for regional ecological conservation, restoration, and governance. Using MODIS products involving 2010—2019 remote sensing data, this study constructed the remote sensing ecological index (RSEI) for the Dongting Lake basin based on four ecological indices: greenness, humidity, dryness, and heat. Furthermore, this study explored the spatio-temporal dynamic characteristics of the ecological environment in the basin and their influencing factors. The results show that: ① From 2010 to 2019, the Dongting Lake basin exhibited an elevated greenness index, a reduced humidity index, and relatively stable dryness and heat indices; ② The ecological environment of the Dongting Lake basin was generally satisfactory, with a mean annual RSEI of 0.58, indicating a fluctuating growth. In terms of spatial distribution, the ecological environment in the western and surrounding areas was superior to that in the eastern and central areas; ③ There were strong correlations between RSEI and precipitation, air temperature, elevation, and land cover. The RSEI was the highest (0.65) for forest land and the lowest (0.31) for construction land. As for the two primary land conversion types (grassland → forest land, arable land → grassland) in the basin, the former type could improve the regional ecological environment (ΔRSEI=0.002 5, a contribution rate of 46.3%), whereas the latter type might lead to ecological environment deterioration (ΔRSEI=-0.000 4, contribution rate: 44.44%). The results of this study, assisting in deeply understanding the spatio-temporal characteristics of the ecological environment in the basin and their internal driving mechanisms and facilitating scientific land planning and ecological environment governance, hold critical theoretical and practical significance.

Key wordsremote sensing ecological index    MODIS data    land use/cover change    Dongting Lake basin
收稿日期: 2022-09-19      出版日期: 2024-03-13
ZTFLH:  TP79  
  P09  
基金资助:国家自然科学基金项目“土地利用/覆盖变化(LUCC);湖南省自然科学基金优秀青年项目“土地利用/覆盖变化(LUCC)的生态环境响应”(2020JJ3045)
通讯作者: 冯徽徽(1986-),男,博士,副教授,主要从事资源环境遥感与可持续发展方面研究。E-mail: hhfeng@csu.edu.cn
作者简介: 李世杰(1997-),男,硕士研究生,主要从事资源与环境方面研究。Email: 215012190@csu.edu.cn
引用本文:   
李世杰, 冯徽徽, 王珍, 杨卓琳, 王姝. 2010—2019年间洞庭湖流域生态环境状况时空动态特征及影响因素[J]. 自然资源遥感, 2024, 36(1): 179-188.
LI Shijie, FENG Huihui, WANG Zhen, YANG Zhuolin, WANG Shu. Ecological environment in the Dongting Lake basin over the past decade: Spatio-temporal dynamic characteristics and their influencing factors from 2010 to 2019. Remote Sensing for Natural Resources, 2024, 36(1): 179-188.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2022375      或      https://www.gtzyyg.com/CN/Y2024/V36/I1/179
Fig.1  洞庭湖流域概况
Fig.2  生态指标年际变化趋势
Fig.3  生态指标空间分布特征
指标 2010年 2011年 2012年 2013年 2014年 2015年 2016年 2017年 2018年 2019年
NDVI 0.490 0.520 0.700 0.550 0.640 0.710 0.750 0.610 0.660 0.580
WET 0.068 0.095 0.056 0.052 0.068 0.041 0.054 0.053 0.066 0.088
NDSI -0.200 -0.150 -0.097 -0.059 -0.150 -0.029 -0.031 -0.085 -0.022 -0.099
LST -0.840 -0.840 -0.700 -0.830 -0.750 -0.700 -0.650 -0.790 -0.750 -0.800
特征值 0.009 0.009 0.006 0.009 0.005 0.005 0.006 0.008 0.007 0.009
方差贡献率/% 77.700 81.100 76.800 84.600 73.500 78.300 82.800 80.800 81.800 82.800
Tab.1  主成分分析结果
Fig.4  RSEI年际变化趋势
RSEI
质量
等级
多年均值 2013年 2016年
面积/
km2
占比/% 面积/
km2
占比/% 面积/
km2
占比/%
790 0.30 1 221 0.47 1 068 0.41
较差 10 488 4.01 25 712 9.84 8 525 3.26
良好 126 373 48.36 151 525 57.98 97 878 37.45
较优 121 676 46.56 80 449 30.78 148 124 56.68
2 016 0.77 246 0.93 5 748 2.20
Tab.2  生态状况等级面积统计
Fig.5  生态环境状况等级
Fig.6  2010—2019年不同地类RSEI年际生长季均值变化趋势
土地利用转换类型 编号 面积/km2 占比/%
永久林地 1111111111 143 243 54.81
永久草地 2222222222 50 340 19.26
永久耕地 3333333333 30 068 11.51
永久建筑用地 4444444444 3 081 1.18
永久水体与湿地 5555555555 1 526 0.58
林地→草地 3 798 1.45
草地→耕地 6 260 2.40
草地→林地 5 524 2.11
耕地→草地 4 315 1.65
Tab.3  变化转换类型
Fig.7  土地利用转化类型空间分布
土地利用
变化类型
轨迹编号 面积/
km2
RSEI平
均变化率
贡献值 贡献
率/%
林地→草地 1111111112 470 0.001 6 -0.000 4 14.8
1111111122 651 0.001 7
1111111222 730 0.001 2
1111122222 227 0.000 9
1111222222 295 0.001 3
1112222222 467 0.002 2
1122222222 423 0.002 8
1222222222 535 0.003 3
草地→林地 2111111111 538 0.004 6 0.002 5 46.3
2211111111 677 0.004 9
2221111111 535 0.004 8
2222111111 609 0.005 6
2222211111 539 0.005 9
2222221111 299 0.006 0
2222222111 777 0.005 9
2222222211 1 140 0.005 3
2222222221 1 146 0.005 7
草地→耕地 2222222223 701 0.003 1 0.000 9 23.7
2222222233 816 0.003 6
2222222333 706 0.002 9
2222223333 310 0.003 6
2222233333 339 0.003 3
2222333333 409 0.004 1
2223333333 604 0.004 6
2233333333 906 0.004 4
2333333333 733 0.004 5
耕地→草地 3222222222 532 -0.000 5 -0.000 4 44.4
3322222222 360 -0.001 4
3332222222 372 -0.002 7
3333222222 422 -0.003 0
3333322222 273 -0.001 4
3333333222 574 -0.001 3
3333333322 675 -0.000 9
3333333332 1 107 -0.000 5
Tab.4  土地利用变化轨迹贡献特征
[1] 彭燕, 何国金, 张兆明, 等. 赣南稀土矿开发区生态环境遥感动态监测与评估[J]. 生态学报, 2016, 36(6):1676-1685.
Peng Y, He G J, Zhang Z M, et al. Eco-environmental dynamic monitoring and assessment of rare earth mining area in Southern Ganzhou Using Remote Sensing[J]. Acta Ecologica Sinica, 2016, 36(6):1676-1685.
[2] 李爱军, 朱翔, 赵碧云, 等. 生态环境动态监测与评价指标体系探讨[J]. 中国环境监测, 2004, 20(4):35-38.
Li A J, Zhu X, Zhao B Y, et al. Preliminary study on construction of indicator system of dynamic monitoring and assessment of eco-environments[J]. Environmental Monitoring in China, 2004, 20(4):35-38.
[3] Miao C L, Sun L Y, Yang L. The studies of ecological environmental quality assessment in Anhui Province based on ecological footprint[J]. Ecological Indicators, 2016, 60:879-883.
doi: 10.1016/j.ecolind.2015.08.040
[4] 邵波, 陈兴鹏. 甘肃省生态环境质量综合评价的AHP分析[J]. 干旱区资源与环境, 2005, 19(4):29-32.
Shao B, Chen X P. AHP analysis on the integrated assessment for the eco-environment of Gansu Province[J]. Journal of Arid Land Resources and Environment, 2005, 19(4):29-32.
[5] 叶亚平, 刘鲁君. 中国省域生态环境质量评价指标体系研究[J]. 环境科学研究, 2000, 13(3):33-36.
Ye Y P, Liu L J. A preliminary study on assessment indicator system of provincial eco-environmental quality in China[J]. Research of Environmental Sciences, 2000, 13(3):33-36.
[6] 厉彦玲, 朱宝林, 王亮, 等. 基于综合指数法的生态环境质量综合评价系统的设计与应用[J]. 测绘科学, 2005, 30(1):89-91,111.
Li Y L, Zhu B L, Wang L, et al. Designing and application of comprehensive index method based ecological environment quality comprehensive evaluation system[J]. Science of Surveying and Mapping, 2005, 30(1):89-91,111.
[7] 余晓芳. 基于遥感生态指数的喀斯特地区生态环境质量变化研究——以贵阳市为例[D]. 贵阳: 贵州师范大学, 2018:1-2.
Yu X F. The research of environment quality change of Karst area based on remote sensing based ecological index[D]. Guiyang: Guizhou Normal University, 2018:1-2.
[8] 姚尧, 王世新, 周艺, 等. 生态环境状况指数模型在全国生态环境质量评价中的应用[J]. 遥感信息, 2012, 27(3):93-98.
Yao Y, Wang S X, Zhou Y, et al. The application of ecological environment index model on the national evaluation of ecological environment quality[J]. Remote Sensing Information, 2012, 27(3):93-98.
[9] 王振华, 马海州, 周笃珺, 等. RS和GIS支持下的自然生态环境评价——以南水北调雅砻江工程区为例[J]. 盐湖研究, 2007, 15(1):1-4.
Wang Z H, Ma H Z, Zhou D J, et al. Integrated evaluation of eco-environment based on RS/GIS:A case study of the south-to-north water transfer project in Yalongjiang River[J]. Journal of Salt Lake Research, 2007, 15(1):1-4.
[10] 徐涵秋. 区域生态环境变化的遥感评价指数[J]. 中国环境科学, 2013, 33(5):889-897.
Xu H Q. A remote sensing index for assessment of regional ecological changes[J]. China Environmental Science, 2013, 33(5):889-897.
[11] 孙彩霞, 杨帆, 胡晋. 基于遥感数据的新生态环境指数评价[J]. 测绘通报, 2021,(11):12-15,53.
doi: 10.13474/j.cnki.11-2246.2021.330
Sun C X, Yang F, Hu J. New ecological index evaluation based on remote sensing data[J]. Bulletin of Surveying and Mapping, 2021,(11):12-15,53.
doi: 10.13474/j.cnki.11-2246.2021.330
[12] 徐涵秋. 城市遥感生态指数的创建及其应用[J]. 生态学报, 2013, 33(24):7853-7862.
Xu H Q. A remote sensing urban ecological index and its application[J]. Acta Ecologica Sinica, 2013, 33(24):7853-7862.
[13] 岳辉, 刘英, 朱蓉. 基于遥感生态指数的神东矿区生态环境变化监测[J]. 水土保持通报, 2019, 39(2):101-107,114.
Yue H, Liu Y, Zhu R. Monitoring ecological environment change based on remote sensing ecological index in Shendong mining area[J]. Bulletin of Soil and Water Conservation, 2019, 39(2):101-107,114.
[14] 王婷, 章新平, 黎祖贤, 等. 近52年来洞庭湖流域气象干旱的时空分布特征[J]. 长江流域资源与环境, 2016, 25(3):514-522.
Wang T, Zhang X P, Li Z X, et al. Temporal and spatial distribution characteristics of meteorological drought for recent 52 years in Dongting Lake basin[J]. Resources and Environment in the Yangtze Basin, 2016, 25(3):514-522.
[15] 邓正华, 戴丽琦, 邓冰, 等. 洞庭湖流域水资源承载力时空演变分析[J]. 经济地理, 2021, 41(5):186-192.
Deng Z H, Dai L Q, Deng B, et al. Spatial-temporal evolution of water resources carrying capacity in Dongting Lake basin[J]. Economic Geography, 2021, 41(5):186-192.
[16] 方精云, 郭兆迪, 朴世龙, 等. 1981—2000年中国陆地植被碳汇的估算[J]. 中国科学(D辑:地球科学), 2007, 37(6):804-812.
Fang J Y, Guo Z D, Piao S L, et al. Estimation of carbon sinks of tervestrial vegetation in China from 1981 to 2000[J]. Scientia in Sinica(Series D(Earth Sciences)), 2007, 37(6):804-812.
[17] 杨江燕, 吴田, 潘肖燕, 等. 基于遥感生态指数的雄安新区生态质量评估[J]. 应用生态学报, 2019, 30(1):277-284.
Yang J Y, Wu T, Pan X Y, et al. Ecological quality assessment of Xiongan New Area based on remote sensing ecological index[J]. Chinese Journal of Applied Ecology, 2019, 30(1):277-284.
[18] 陈超, 江涛, 刘祥磊. 基于缨帽变换的遥感图像融合方法研究[J]. 测绘科学, 2009, 34(3):105-106,163.
Chen C, Jiang T, Liu X L. Research on remote sensing image fusion methods based on tasseled cap transformation[J]. Science of Surveying and Mapping, 2009, 34(3):105-106,163.
[19] Zhang X, Schaaf C B, Friedl M A, et al. MODIS tasseled cap transformation and its utility[C]// IEEE International Geoscience and Remote Sensing Symposium Toronto,Ontario,Canada.IEEE, 2002:1063-1065.
[20] 左璐, 孙雷刚, 鲁军景, 等. 基于MODIS的京津冀地区生态质量综合评价及其时空变化监测[J]. 自然资源遥感, 2022, 34(2):203-214.doi:10.6046/zrzyyg.2021224.
Zuo L, Sun G L, Lu J J, et al. MODIS-based comprehensive assessment and spatial-temporal change monitoring of ecological quality in Beijing-Tianjin-Hebei region[J]. Remote Sensing for Natural Resources, 2022, 34(2):203-214.doi:10.6046/zrzyyg.2021224.
[21] 王建, 赵牡丹, 李健波, 等. 基于MODIS时序数据的秦巴山区生态环境质量动态监测及驱动力分析[J]. 山地学报, 2021, 39(6):830-841.
Wang J, Zhao M D, Li J B, et al. Dynamic monitoring and driving forces of eco-environmental quality in the Qinba Mountains based on MODIS time-series data[J]. Mountain Research, 2021, 39(6):830-841.
[22] 尹建平. 基于遥感生态指数的平朔露天矿生态环境评价[J]. 露天采矿技术, 2021, 36(1):45-47.
Yin J P. Ecological environment evaluation based on remote sensing ecological index in Pingshuo Open-pit Mine[J]. Opencast Mining Technology, 2021, 36(1):45-47.
[23] Feng H H, Liu Y B. Trajectory based detection of forest-change impacts on surface soil moisture at a basin scale Poyang Lake Basin,China[J]. Journal of Hydrology, 2014, 514:337-346.
doi: 10.1016/j.jhydrol.2014.04.044
[24] Feng H H, Zou B. A greening world enhances the surface-air temperature difference[J]. Science of the Total Environment, 2019, 658:385-394.
doi: 10.1016/j.scitotenv.2018.12.210
[25] 符静, 秦建新, 张猛, 等. 2001-2013年洞庭湖流域植被覆盖度时空变化特征[J]. 地球信息科学学报, 2016, 18(9):1209-1216.
doi: 10.3724/SP.J.1047.2016.01209
Fu J, Qin J X, Zhang M, et al. Spatial-temporal variations of vegetation coverage in the Lake Dongting Basin from 2001 to 2013[J]. Journal of Geo-Information Science, 2016, 18(9):1209-1216.
[26] 桑国庆, 唐志光, 邓刚, 等. 基于MODIS NDVI时序数据的湖南省植被变化研究[J]. 长江流域资源与环境, 2021, 30(5):1100-1109.
Sang G Q, Tang Z G, Deng G, et al. Study on vegetation change in Hunan Province based on MODIS NDVI time series data[J]. Resources and Environment in the Yangtze Basin, 2021, 30(5):1100-1109.
[27] 缪鑫辉, 梁勤欧. 基于遥感生态指数的甬江流域生态环境变化分析[J]. 长江流域资源与环境, 2021, 30(2):427-438.
Miao X H, Liang Q O. Analysis of ecological environment changes in Yongjiang River basin based on remote sensing ecological index[J]. Resources and Environment in the Yangtze Basin, 2021, 30(2):427-438.
[28] 宋慧敏, 薛亮. 基于遥感生态指数模型的渭南市生态环境质量动态监测与分析[J]. 应用生态学报, 2016, 27(12):3913-3919.
doi: 10.13287/j.1001-9332.201612.024
Song H M, Xue L. Dynamic monitoring and analysis of ecological environment in Weinan City,Northwest China based on RSEI model[J]. Chinese Journal of Applied Ecology, 2016, 27(12):3913-3919.
[29] 雷倩, 章新平, 黎祖贤, 等. 洞庭湖流域生长季气象特旱对植被覆盖的影响[J]. 长江流域资源与环境, 2020, 29(1):187-199.
Lei Q, Zhang X P, Li Z X, et al. Impacts of meteorological extreme drought during growing season on vegetation cover in Dongting Lake basin[J]. Resources and Environment in the Yangtze Basin, 2020, 29(1):187-199.
[30] 杨伶, 邓敏, 王金龙, 等. 近40年来洞庭湖流域土地利用及生态风险时空演变分析[J]. 生态学报, 2021, 41(10):3929-3939.
Yang L, Deng M, Wang J L, et al. Spatial-temporal evolution of land use and ecological risk in Dongting Lake Basin during 1980—2018[J]. Acta Ecologica Sinica, 2021, 41(10):3929-3939.
[31] 孔令桥, 郑华, 欧阳志云. 基于生态系统服务视角的山水林田湖草生态保护与修复——以洞庭湖流域为例[J]. 生态学报, 2019, 39(23):8903-8910.
Kong L Q, Zheng H, Ouyang Z Y. Ecological protection and restoration of forest,wetland,grassland and cropland based on the perspective of ecosystem services:A case study in Dongting Lake Watershed[J]. Acta Ecologica Sinica, 2019, 39(23):8903-8910.
[32] 刘英, 党超亚, 岳辉, 等. 改进型遥感生态指数与RSEI的对比分析[J]. 遥感学报, 2022, 26(4):683-697.
Liu Y, Dang C Y, Yue H, et al. Comparison between modified remote sensing ecological index and RSEI[J]. National Remote Sensing Bulletin, 2022, 26(4):683-697.
doi: 10.11834/jrs.20229338
[33] 孙颖, 易浪, 尹少华. 洞庭湖流域植被覆盖变化及其协同治理[J]. 经济地理, 2022, 42(4):190-201.
doi: 10.15957/j.cnki.jjdl.2022.04.021
Sun Y, Yi L, Yin S H. Vegetation cover change in Dongting Lake basin and its coordination governance[J]. Economic Geography, 2022, 42(4):190-201.
doi: 10.15957/j.cnki.jjdl.2022.04.021
[34] 韩宇, 毛逸飞, 杨伶, 等. 洞庭湖流域生境质量对LUCC的动态响应[J]. 中南林业科技大学学报, 2023, 43(6):148-157.
Han Y, Mao Y F, Yang L, et al. Dynamic responses of habitat quality to LUCC in the Dongting Lake Basin[J]. Central South University of Forestry and Technology, 2023, 43(6):148-157.
[1] 朱思佳, 冯徽徽, 邹滨, 叶书朝. 2000—2019年洞庭湖流域植被NPP时空特征及驱动因素分析[J]. 自然资源遥感, 2022, 34(3): 196-206.
[2] 陈宝林, 张斌才, 吴静, 李纯斌, 常秀红. 历史平均值法用于MODIS影像像元云补偿——以甘肃省为例[J]. 国土资源遥感, 2021, 33(2): 85-92.
[3] 朱欣然, 吴波, 张强. 一种改进CVAPS的LUCC分类自动更新方法[J]. 国土资源遥感, 2018, 30(2): 29-37.
[4] 李石华, 周峻松, 王金亮. 1974—2014年抚仙湖流域土地利用/覆盖时空变化与驱动力分析[J]. 国土资源遥感, 2017, 29(4): 132-139.
[5] 杜培军, 陈宇, 谭琨. 江苏滨海湿地土地利用/覆盖变化与地表温度响应遥感监测[J]. 国土资源遥感, 2014, 26(2): 112-120.
[6] 梁志华. MODIS影像的几何处理算法研究[J]. 国土资源遥感, 2012, 24(1): 8-12.
[7] 郝慧梅, 郝永利, 田党生. 基于RS与GIS的LUCC生态服务功能价值动态核算[J]. 国土资源遥感, 2011, 23(4): 115-120.
[8] 薛存芳, 张玮. 基于MODIS数据的内蒙古草地植被退化动态监测研究[J]. 国土资源遥感, 2009, 21(2): 97-101.
[9] 廖程浩, 刘雪华. MODIS数据水体识别指数的识别效果比较分析[J]. 国土资源遥感, 2008, 20(4): 22-26.
[10] 历华, 曾永年, 柳钦火. 基于遥感的长沙市城市热岛与土地利用/覆盖变化研究[J]. 国土资源遥感, 2008, 20(4): 47-52.
[11] 刘美玲, 齐清文, 邹秀萍, 李晋. 基于RS对云南边境地区土地覆盖现状及变化研究[J]. 国土资源遥感, 2006, 18(1): 75-78.
[12] 陈劲松, 田庆久, 邵芸, 朱博勤, 惠凤鸣, 王为民. SZ-3 CMODIS 数据的质量及应用分析[J]. 国土资源遥感, 2003, 15(1): 46-50.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发