Please wait a minute...
 
自然资源遥感  2025, Vol. 37 Issue (3): 192-202    DOI: 10.6046/zrzyyg.2024011
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
融合多源遥感数据的河南省淅川县植被动态演变研究
葛利玲1(), 王璐2()
1.河南省国土空间调查规划院,郑州 450016
2.河南理工大学测绘与国土信息工程学院,焦作 454000
Exploring the dynamic evolution of vegetation cover in Xichuan County, Henan Province by integrating multisource remote sensing data
GE Liling1(), WANG Lu2()
1. Henan Provincial National Land Space Survey and Planning Institute, Zhengzhou 450016, China
2. School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China
全文: PDF(4385 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 河南省淅川县作为南水北调中线工程的重要水源区,对淅川县的植被时空变化特征及其驱动机制进行探究,将对淅川县的生态修复和南水北调中线工程水源区的环境保护具有重要意义。该研究以现有的Landsat和MODIS数据为基础,利用STARFM方法和像元二分模型,构建了2002—2022年淅川县的长时序植被覆盖度(fractional vegetation cover,FVC)数据,并结合回归趋势分析方法、地理探测器模型和相关性分析等方法,探究2002—2022年间淅川县植被的时空变化特征及其驱动机制。结果表明: ①经过STARFM方法重建后的年尺度FVC与真实的年尺度FVCR2达到0.914,相比于数据缺失条件下的0.864,提升了0.05,因此STARFM方法可以为更加准确地开展淅川县的植被动态演变研究提供数据基础; ②2002—2022年间淅川县植被覆盖情况一般,平均FVC达到0.516,主要呈现“西北高,东南低”的分布特征,整体呈现改善趋势,改善区域的面积占比为76.03%,主要分布在淅川县的西北部和东南部,退化区域的面积占比为18.09%,主要分布在丹江口水库、丹江和淅水水域的附近区域; ③淅川县植被空间分异性的主导因素为高程和坡度,次要因素为土壤类型和平均气温,土壤质地和平均降雨量影响最小。淅川县境内植被出现改善和退化的主要原因均为人为因素,气候因素对其影响较小,人为因素主要为南水北调中线工程的实施,且对植被生长变化的促进作用远大于抑制作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
葛利玲
王璐
关键词 淅川县南水北调中线工程时空自适应反射率融合模型植被覆盖度    
Abstract

Xichuan County serves as a primary water source area for the middle route of the South-to-North Water Diversion Project. Investigating the spatiotemporal variations and driving mechanism of vegetation cover in Xichuan County is significant for the ecological restoration of the county and the environmental protection of the water source area for the middle route. Based on available Landsat and MODIS data, this study constructed long time-series fractional vegetation cover (FVC) data for Xichuan County from 2002 to 2022 using the spatiotemporal adaptive reflection fusion model (STARFM) and the dimidiate pixel model. In combination with regression and trend analyses, the geodetector model, and correlation analysis, this study explored the spatiotemporal variations and driving mechanism of vegetation cover in Xichuan County during the study period. The results indicate that the coefficient of determination (R2) between the STARFM-reconstructed and real annual-scale FVC reached 0.914, an improvement of 0.05 compared to 0.864 under conditions of data missing. Therefore, the STARFM can provide a reliable data basis for more accurately investigating the dynamic evolution of vegetation cover in Xichuan County. From 2002 to 2022, the vegetation cover in Xichuan County was ordinary, with an average FVC value of 0.516, characterized by higher vegetation cover in the northwest compared to the southeast. The vegetation cover in Xichuan County showed an overall improvement trend, with an improved area representing 76.02 %, primarily covering the northwestern and southeastern portions of Xichuan County. In contrast, the degraded area represented 23.98 %, primarily covering the areas surrounding the Danjiangkou reservoir, Danjiang River, and Xishui branch. The spatial heterogeneity of vegetation cover in Xichuan County was predominantly influenced by elevation and slope, followed by soil type and average temperature, with minimal impacts from soil texture and average rainfall. The improvement and degradation of vegetation cover in Xichuan County were principally caused by anthropogenic factors, with minimal influence from climate factors. The primary anthropogenic factor denotes the middle route of the South-to-North Water Diversion Project, which contributed significantly to vegetation growth rather than inhibitory effects.

Key wordsXichuan County    middle route of the South-to-North Water Diversion Project    spatiotemporal adaptive reflection fusion model (STARFM)    fractional vegetation cover (FVC)
收稿日期: 2024-01-04      出版日期: 2025-07-01
ZTFLH:  TP79  
通讯作者: 王璐(1999-),女,硕士研究生,主要从事资源环境遥感。Email: c17832177427@163.com
作者简介: 葛利玲(1978-),女,高级工程师,主要从事国土空间规划、土地复垦、土地评价等。Email: geliling@163.com
引用本文:   
葛利玲, 王璐. 融合多源遥感数据的河南省淅川县植被动态演变研究[J]. 自然资源遥感, 2025, 37(3): 192-202.
GE Liling, WANG Lu. Exploring the dynamic evolution of vegetation cover in Xichuan County, Henan Province by integrating multisource remote sensing data. Remote Sensing for Natural Resources, 2025, 37(3): 192-202.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2024011      或      https://www.gtzyyg.com/CN/Y2025/V37/I3/192
Fig.1  研究区地理位置
波段类型 Landsat4—5 TM Landsat7 ETM+ Landsat8—9 OLI
波段 波长/μm 波段 波长/μm 波段 波长/μm
近红外
(NIR)
B4 0.76~0.90 B4 0.76~0.96 B5 0.85~0.88
红波段
(Red)
B3 0.63~0.69 B3 0.62~0.69 B4 0.64~0.67
Tab.1  使用的Landsat数据的波段详细介绍
波段 波长/μm
B2 0.84~0.87
B1 0.62~0.67
Tab.2  使用的MOD13Q1数据
月份 2002年 2004年 2006年 2008年 2010年 2012年 2014年 2016年 2018年 2020年 2022年
4 04/02 04/29 04/26 04/16 04/16 04/06
5 05/04 05/17 05/23 05/12 05/02 05/29 05/03
6 06/13 06/16 06/05 06/27 08/14 06/30 06/28
7 07/07 07/04 09/04 07/08 07/29
8 08/16 08/09
9 09/01 09/22 08/09 09/23 09/18
10 10/27 10/08 10/14 10/18
Tab.3  Landsat影像数据集信息
月份 2002年 2004年 2006年 2008年 2010年 2012年 2014年 2016年 2018年 2020年 2022年
4 04/06 04/06 04/07 04/06 04/07
5 05/08 05/08 05/09 05/08
6 06/09 06/10 06/09 06/10
7 07/12 07/11 07/12 07/12 07/11 07/12
8 08/12 08/13 08/12 08/13 08/12 08/12 08/12 08/13 08/13
9 09/14 09/14 09/14 09/14 09/14 09/14
10 10/15 10/16 10/15 10/16 10/15 10/16 10/15
Tab.4  MODIS影像数据集信息
Fig.2  STARFM方法的有效性验证实验
Fig.3  STARFM方法的有效性验证实验的散点图
Fig.4  2002—2022年淅川县长时序FVC数据集
Fig.5  2002—2022年间淅川县植被空间分布
Fig.6  2002—2022年间淅川县FVC年际变化曲线
Fig.7  2002—2022年间淅川县FVC变化趋势
驱动因子 X1 X2 X3 X4 X5 X6
q 0.234 0.175 0.259 0.152 0.359 0.302
Tab.5  淅川县植被空间分异性的风险因子探测结果
变化趋势的
显著性
变化趋势的
正负
复相关性的
显著性
驱动因素的判断结果
P≥0.05 未变化区域
P<0.05 Slope≥0 P≥0.05 人为造成的退化
P≥0.05 人为造成的改善
Slope<0 P<0.05 人为和气候造成的退化
P<0.05 人为和气候造成的改善
Tab.6  淅川县植被生长变化的驱动因素判断标准
Fig.8  淅川县植被生长变化的驱动因素判断结果
[1] 吴昌广, 周志翔, 肖文发, 等. 基于MODIS NDVI的三峡库区植被覆盖度动态监测[J]. 林业科学, 2012, 48(1):22-28.
Wu C G, Zhou Z X, Xiao W F, et al. Dynamic monitoring of vegetation coverage in Three Gorges Reservoir Area based on MODIS NDVI[J]. Scientia Silvae Sinicae, 2012, 48(1):22-28.
[2] 李佳, 廉振强, 窦明, 等. 丹江库区水质时空分布特征及影响因素[J]. 南水北调与水利科技(中英文), 2023, 21(1):181-189.
Li J, Lian Z Q, Dou M, et al. Spatio-temporal distribution characteristics of water quality and influencing factors in Danjiang Reservoir Area[J]. South-to-North Water Transfers and Water Science & Technology, 2023, 21(1):181-189.
[3] 肖玉娜, 程靖华, 莫晓聪, 等. 丹江口水库浮游植物群落时空变化及其与环境因子的关系[J]. 湖泊科学, 2023, 35(3):821-832.
Xiao Y N, Cheng J H, Mo X C, et al. Spatio-temporal variation of phytoplankton community and its relationship with environmental factors in Danjiangkou Reservoir[J]. Journal of Lake Sciences, 2023, 35(3):821-832.
[4] 崔囤月, 王世东, 张学军. 1991—2021年雄安新区土地利用与植被覆盖变化遥感研究[J]. 自然资源遥感, 2023, 35(4):214-225.doi:10.6046/zrzyyg.2022311.
Cui D Y, Wang S D, Zhang X J. A remote sensing-based study on change in land use and vegetation cover in Xiong’an New Area from 1991 to 2021[J]. Remote Sensing for Natural Resources, 2023, 35(4):214-225.doi:10.6046/zrzyyg.2022311.
[5] Chu H, Venevsky S, Wu C, et al. NDVI-based vegetation dynamics and its response to climate changes at Amur-Heilongjiang River Basin from 1982 to 2015[J]. Science of the Total Environment, 2019,650:2051-2062.
[6] Guo Y, Zhang X, Wang Q, et al. Temporal changes in vegetation around a shale gas development area in a subtropical Karst Region in southwestern China[J]. Science of the Total Environment, 2020,701:134769.
[7] 钟安亚, 鲍铖, 胡春明. 生态修复视角下德兴市矿区NDVI时空动态变化监测研究[J]. 环境工程, 2024, 42(5):122-130.
Zhong A Y, Bao C, Hu C M. Spatiotemporal dynamic change monitoring of NDVI in mining areas of Dexing from the perspective of ecological restoration[J]. Environmental Engineering, 2024, 42(5):122-130.
[8] Huo H, Sun C. Spatiotemporal variation and influencing factors of vegetation dynamics based on Geodetector:A case study of the northwestern Yunnan Plateau,China[J]. Ecological Indicators, 2021,130:108005.
[9] 缪丽娟, 张宇阳, 揣小伟, 等. 亚洲旱区草地NDVI对气候变化的响应及滞后效应[J]. 植物生态学报, 2023, 47(10):1375-1385.
doi: 10.17521/cjpe.2022.0474
Miao L J, Zhang Y Y, Chuai X W, et al. Effects of climatic factors and their time-lag on grassland NDVI in Asian drylands[J]. Chinese Journal of Plant Ecology, 2023, 47(10):1375-1385.
[10] 王思, 张路路, 林伟彪, 等. 基于MODIS-归一化植被指数的广东省植被覆盖与土地利用变化研究[J]. 生态学报, 2022, 42(6):2149-2163.
Wang S, Zhang L L, Lin W B, et al. Study on vegetation coverage and land-use change of Guangdong Province based on MODIS-NDVI[J]. Acta Ecologica Sinica, 2022, 42(6):2149-2163.
[11] 彭文甫, 张冬梅, 罗艳玫, 等. 自然因子对四川植被NDVI变化的地理探测[J]. 地理学报, 2019, 74(9):1758-1776.
doi: 10.11821/dlxb201909005
Peng W F, Zhang D M, Luo Y M, et al. Influence of natural factors on vegetation NDVI using geographical detection in Sichuan Pro-vince[J]. Acta Geographica Sinica, 2019, 74(9):1758-1776.
[12] 晋成名, 杨兴旺, 景海涛. 基于RS的陕北地区植被覆盖度变化及驱动力研究[J]. 自然资源遥感, 2021, 33(4):258-264.doi:10.6046/zrzyyg.2021019.
Jin C M, Yang X W, Jing H T. A RS-based study on changes in fractional vegetation cover in North Shaanxi and their driving factors[J]. Remote Sensing for Natural Resources, 2021, 33(4):258-264.doi:10.6046/zrzyyg.2021019.
[13] 赵冬林, 朱仕荣. 2010—2021年金沙江干热河谷植被覆盖度时空变化及其影响因素[J]. 生态学杂志, 2024, 43(8):2373-2381.
Zhao D L, Zhu S R. Spatiotemporal variation of vegetation coverage and its influencing factors in the dry-hot valley of Jinsha River during 2010—2021[J]. Chinese Journal of Ecology, 2024, 43(8):2373-2381.
[14] 刘雨亭, 王磊, 李谢辉, 等. 西南地区2000—2020年植被覆盖度时空变化与影响因素分析[J]. 高原气象, 2024, 43(1):264-276.
doi: 10.7522/j.issn.1000-0534.2023.00052
Liu Y T, Wang L, Li X H, et al. Analysis on spatio-temporal variability of fractional vegetation cover and influencing factors from 2000 to 2020 in southwestern China[J]. Plateau Meteorology, 2024, 43(1):264-276.
doi: 10.7522/j.issn.1000-0534.2023.00052
[15] Jiang W, Yuan L, Wang W, et al. Spatio-temporal analysis of vegetation variation in the Yellow River Basin[J]. Ecological Indicators, 2015,51:117-126.
[16] Zhai H, Huang F, Qi H. Generating high resolution LAI based on a modified FSDAF model[J]. Remote Sensing, 2020, 12(1):150.
[17] Xie D, Zhang J, Sun P, et al. Remote sensing data fusion by combining STARFM and downscaling mixed pixel algorithm[J]. National Remote Sensing Bulletin, 2016, 20(1):62-72.
[18] Song H, Liu Q, Wang G, et al. Spatiotemporal satellite image fusion using deep convolutional neural networks[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(3):821-829.
[19] Gao F, Masek J, Schwaller M, et al. On the blending of the Landsat and MODIS surface reflectance:Predicting daily Landsat surface reflectance[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(8):2207-2218.
[20] Zhu X, Chen J, Gao F, et al. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions[J]. Remote Sensing of Environment, 2010, 114(11):2610-2623.
[21] Zhu X, Helmer E H, Gao F, et al. A flexible spatiotemporal method for fusing satellite images with different resolutions[J]. Remote Sensing of Environment, 2016,172:165-177.
[22] 张玉琢, 杨志贵, 于红妍, 等. 基于STARFM的草地地上生物量遥感估测研究——以甘肃省夏河县桑科草原为例[J]. 草业学报, 2022, 31(6):23-34.
doi: 10.11686/cyxb2021180
Zhang Y Z, Yang Z G, Yu H Y, et al. Estimating grassland above ground biomass based on the STARFM algorithm and remote sensing data:A case study in the Sangke grassland in Xiahe County,Gansu Province[J]. Acta Prataculturae Sinica, 2022, 31(6):23-34.
doi: 10.11686/cyxb2021180
[23] Wang S, Cui D, Wang L, et al. Applying deep-learning enhanced fusion methods for improved NDVI reconstruction and long-term vegetation cover study:A case of the Danjiang River Basin[J]. Ecological Indicators, 2023,155:111088.
[24] 李苗苗, 吴炳方, 颜长珍, 等. 密云水库上游植被覆盖度的遥感估算[J]. 资源科学, 2004, 26(4):153-159.
Li M M, Wu B F, Yan C Z, et al. Estimation of vegetation fraction in the upper basin of Miyun Reservoir by remote sensing[J]. Resources Science, 2004, 26(4):153-159.
[25] 卡米兰·阿布力克, 杨涵. 乌鲁木齐河流域植被覆盖度变化及驱动力研究[J]. 灌溉排水学报, 2024, 43(2):96-105.
Kamilan A, Yang H. Change in vegetation coverage in Urumqi River Basin and the underlying determinants[J]. Journal of Irrigation and Drainage, 2024, 43(2):96-105.
[26] 郭发苗, 彭道黎, 王荫, 等. 基于多尺度2001—2020年河北省植被覆盖度的时空变化及归因分析[J]. 甘肃农业大学学报, 2025, 60(2):179-190,201.
Guo F M, Peng D L, Wang Y, et al. Analysis of spatio-temporal changes and attribution of vegetation cover in Hebei Province from 2001 to 2020 based on multi-scale analysis[J]. Journal of Gansu Agricultural University, 2025, 60(2):179-190,201.
[27] 王超, 侯鹏, 刘晓曼, 等. 中国重要生态系统保护和修复工程区域植被覆盖时空变化研究[J]. 生态学报, 2023, 43(21):8903-8916.
Wang C, Hou P, Liu X M, et al. Spatiotemporal changes in vegetation cover of the national key ecosystem protection and restoration project areas,China[J]. Acta Ecologica Sinica, 2023, 43(21):8903-8916.
[28] Wang J F, Li X H, Christakos G, et al. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun region,China[J]. International Journal of Geographical Information Science, 2010, 24(1):107-127.
[1] 鲁军景, 孙雷刚, 左璐, 刘剑锋, 马晓倩, 郝庆涛. 基于京津冀功能分区的植被覆盖度时空演变特征及其影响因子[J]. 自然资源遥感, 2024, 36(4): 242-253.
[2] 黎孟琦, 李功权, 谢志辉. 整合多源遥感数据的洪涝灾害评估恢复——以河南“7·20”暴雨灾害为例[J]. 自然资源遥感, 2024, 36(1): 250-266.
[3] 晋成名, 杨兴旺, 景海涛. 基于RS的陕北地区植被覆盖度变化及驱动力研究[J]. 自然资源遥感, 2021, 33(4): 258-264.
[4] 陈虹, 郭兆成, 贺鹏. 1988—2018年间洱海流域植被覆盖度时空变换特征探究[J]. 国土资源遥感, 2021, 33(2): 116-123.
[5] 程宇琪, 王雨晴, 孙静萍, 张成福. 多伦县草原植被覆盖与蒸散量时空变化及其关系[J]. 国土资源遥感, 2020, 32(1): 200-208.
[6] 彭继达, 张春桂. 基于高分一号遥感影像的植被覆盖遥感监测——以厦门市为例[J]. 国土资源遥感, 2019, 31(4): 137-142.
[7] 赖家明, 杨武年. 基于RS的川西天然林区近29年植被覆盖动态变化[J]. 国土资源遥感, 2018, 30(4): 132-138.
[8] 张晓东, 刘湘南, 赵志鹏, 赵银鑫, 马玉学, 刘海燕. 基于像元二分法的盐池县植被覆盖度与地质灾害点时空格局分析[J]. 国土资源遥感, 2018, 30(2): 195-201.
[9] 张宇婷, 张振飞, 张志. 新疆大南湖荒漠区1992—2014年间植被覆盖度遥感研究[J]. 国土资源遥感, 2018, 30(1): 187-195.
[10] 张成才, 罗蔚然, 窦小楠, 王金鑫. 应用Landsat8数据改进FCD模型方法[J]. 国土资源遥感, 2017, 29(4): 33-38.
[11] 郑朝菊, 曾源, 赵玉金, 赵旦, 吴炳方. 近15年中国西南地区植被覆盖度动态变化[J]. 国土资源遥感, 2017, 29(3): 128-136.
[12] 刘英, 侯恩科, 岳辉. 基于MODIS的神东矿区植被动态监测与趋势分析[J]. 国土资源遥感, 2017, 29(2): 132-137.
[13] 何海燕, 凌飞龙, 汪小钦, 梁志锋. 基于雷达植被指数的水土流失区植被覆盖度估测[J]. 国土资源遥感, 2015, 27(4): 165-170.
[14] 李钰溦, 贾坤, 魏香琴, 姚云军, 孙俊, 牟丽秋. 中国北方地区植被覆盖度遥感估算及其变化分析[J]. 国土资源遥感, 2015, 27(2): 112-117.
[15] 刘亚迪, 汪小钦, 江洪. 基于地形调节植被指数估算长汀县植被覆盖度[J]. 国土资源遥感, 2015, 27(1): 164-171.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发