Please wait a minute...
 
自然资源遥感  2025, Vol. 37 Issue (4): 21-30    DOI: 10.6046/zrzyyg.2024116
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于特征空间增强下空谱全变差非负矩阵分解的高光谱解混
覃子怡(), 杨隆珊()
贵州大学矿业学院,贵阳 550025
Hyperspectral unmixing based on spectral-spatial total variation nonnegative matrix factorization with feature space augmentation
QIN Ziyi(), YANG Longshan()
Mining College of Guizhou University, Guiyang 550025, China
全文: PDF(5509 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

非负矩阵分解(nonnegative matrix factorization,NMF)因其良好的可解释性和易计算性被广泛用于高光谱影像(hyperspectral image,HSI)解混中。为了有效处理HSI中噪声和解混效率问题,该文提出了一种在特征空间增强下的空谱全变差NMF高光谱解混方法(spectral-spatial total variation nonnegative matrix factorization,SSTVNMF)。首先,通过特征提取,将原始数据空间转换到特征空间,在特征空间下进行解混处理,提高解混效率; 其次,为了降低噪声影响,利用双边滤波(bilateral filtering,BF)方法提取空间信息,对特征提取过程进行增强,保证所提取特征的准确性; 最后,为了保证解混方法的性能,基于NMF方法建立顾及空间特征和光谱特征的全变差(total variation,TV)正则化,空间TV通过计算相邻像元之间丰度的水平和垂直差异来促进丰度平滑,光谱TV是基于最小体积TV通过施加端元之间的约束力使体积最小化来增强端元提取。采用美国地质调查局光谱库合成数据作为模拟数据,Jasper Ridge数据集、APEX数据集和Cuprite数据集作为真实数据进行验证,实验结果表明,相比较于其他基于NMF改进的方法,所提方法在定性和定量评价方面都有提高。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
覃子怡
杨隆珊
关键词 高光谱解混双边滤波全变差光谱空间信息特征提取    
Abstract

Nonnegative matrix factorization (NMF) is commonly used in hyperspectral image (HSI) unmixing due to its high interpretability and computability. To effectively address HSI noise and improve unmixing efficiency, this study proposed a method for hyperspectral unmixing based on spectral-spatial total variation nonnegative matrix factorization (SSTVNMF) with feature space augmentation. First, the original data space was converted to the feature space through feature extraction, allowing the unmixing process to be performed in the feature space for enhanced unmixing efficiency. Second, to reduce the impact of noise, the spatial information was extracted using the bilateral filtering (BF) method for enhanced feature extraction, thereby ensuring the accuracy of extracted features. Third, to ensure the effectiveness of the unmixing method, total variation (TV) regularization that considers both spatial and spectral features was established based on the NMF method. The spatial TV promotes abundance smoothing by calculating the horizontal and vertical differences in abundance between neighboring pixels. Based on the minimum-volume TV, the spectral TV enhances endmember extraction by applying constraint forces between endmembers to minimize the volume. Finally, the proposed method was verified using the synthetic data from the USGS spectral library as simulated data and the Jasper Ridge, APEX, and Cuprite datasets as actual data. The experimental results demonstrate that the proposed method outperformed other improved NMF-based methods in terms of qualitative and quantitative assessments.

Key wordshyperspectral unmixing    bilateral filtering    total variation    spectral-spatial information    feature extraction
收稿日期: 2024-04-01      出版日期: 2025-09-03
ZTFLH:  TP79  
基金资助:国家自然青年科学基金项目“基于深度特征表示模型的稳健高光谐解混方法研究”(43201440);贵州省科学基金一般项目“联合空谱特征约束下非负矩阵分解方法对高光谱遥感影像的解混研究”(黔科合基础-zk[2022]一般133);贵州大学博士基金项目“基于特征建模约束非负矩阵分解的高光谱影像解混研究”((2021)67)
作者简介: 覃子怡(1999-),女,硕士研究生,主要从事高光谱影像解混研究。Email: qinziyi99@foxmail.com
引用本文:   
覃子怡, 杨隆珊. 基于特征空间增强下空谱全变差非负矩阵分解的高光谱解混[J]. 自然资源遥感, 2025, 37(4): 21-30.
QIN Ziyi, YANG Longshan. Hyperspectral unmixing based on spectral-spatial total variation nonnegative matrix factorization with feature space augmentation. Remote Sensing for Natural Resources, 2025, 37(4): 21-30.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2024116      或      https://www.gtzyyg.com/CN/Y2025/V37/I4/21
Fig.1  特征空间增强下SSTVNMF的算法流程图
Fig.2  参数对于特征空间增强下的SSTVNMF算法性能的影响
Fig.3  SNR对算法性能的影响
Fig.4-1  端元数量对算法性能的影响
Fig.4-2  端元数量对算法性能的影响
Fig.5  特征空间增强下的SSTVNMF与其他对比方法在Jasper Ridge数据集上的端元提取图
Tab.1  特征空间增强下的SSTVNMF与其他对比方法在Jasper Ridge数据集上的丰度估计
算法 Jasper Ridge数据集 APEX数据集 Cuprite数据集
SAD SRE 运行时间/s SAD SRE 运行时间/s SAD SRE 运行时间/s
本文方法 0.141 6 10.590 9 0.51 0.138 0 11.762 0 4.23 0.398 4 9.284 1 0.76
SSTVNMF 0.141 9 10.505 2 0.32 0.138 1 11.761 9 3.78 0.391 7 9.177 2 0.50
NMFQMV 0.147 9 8.976 2 1.20 0.138 3 11.963 5 1.08 0.400 0 8.272 6 1.31
SeCoDe 0.215 8 8.420 6 22.78 0.163 5 3.079 8 6.20 0.280 5 7.026 8 13.50
gtvMBO 0.217 9 8.073 6 0.01 0.141 1 -0.274 9 0.01 0.263 7 4.308 5 0.01
PISINMF 0.119 8 9.916 9 2.70 0.147 9 7.380 3 1.53 0.434 3 10.044 9 3.70
EBEAE-TV 0.237 7 11.701 6 2.13 0.129 8 -1.452 3 1.17 0.288 2 4.799 4 3.37
SGSNMF 0.257 7 7.170 6 3.93 0.146 0 3.185 9 0.71 0.274 8 5.097 6 6.56
KbSNMF 0.137 8 9.243 5 6.83 0.139 8 11.132 1 3.05 0.409 2 8.793 3 14.74
Tab.2  特征空间增强下的SSTVNMF与其他对比方法在3个真实数据集上的评价指标和运行时间
算法 约束项 评价指标
空间TV 光谱TV BF SAD SRE
NMFQMV × × 0.147 9 8.976 2
SSTVNMF × 0.141 9 10.505 2
本文方法 0.141 6 10.590 9
  在Jasper Ridge数据集的光谱TV、空间TV和双边滤波消融实验 Fig.3 Blation experiments with Jasper Ridge data for TVspec, TVspa, and BF
[1] 苏远超, 许若晴, 高连如, 等. 基于深度学习的高光谱遥感图像混合像元分解研究综述[J]. 遥感学报, 2024, 28(1):1-19.
Su Y C, Xu R Q, Gao L R, et al. Development of deep learning-based hyperspectral remote sensing image unmixing[J]. National Remote Sensing Bulletin, 2024, 28(1):1-19.
[2] 孙肖, 徐林林, 王晓阳, 等. 基于优化K-P-Means解混方法的高光谱图像矿物识别[J]. 自然资源遥感, 2022, 34(3):43-49.doi:10.6046/zrzyyg.2021215.
Sun X, Xu L L, Wang X Y, et al. Mineral identification from hyperspectral images based on the optimized K-P-Means unmixing method[J]. Remote Sensing for Natural Resources, 2022, 34(3):43-49.doi:10.6046/zrzyyg.2021215.
[3] 袁静, 章毓晋, 高方平. 线性高光谱解混模型综述[J]. 红外与毫米波学报, 2018, 37(5):553-571.
Yuan J, Zhang Y J, Gao F P. An overview on linear hyperspectral unmixing[J]. Journal of Infrared and Millimeter Waves, 2018, 37(5):553-571.
[4] 李殷娜, 李正强, 郑杨, 等. 基于非负矩阵分解的中红外地表特性光谱重建方法[J]. 光谱学与光谱分析, 2024, 44(2):563-570.
Li Y N, Li Z Q, Zheng Y, et al. Spectral reconstruction method of mid-infrared surface characteristics based on non-negative matrix factorization[J]. Spectroscopy and Spectral Analysis, 2024, 44(2):563-570.
[5] Zhao X L, Wang F, Huang T Z, et al. Deblurring and sparse unmixing for hyperspectral images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(7):4045-4058.
[6] 王建宇, 李春来. 高光谱遥感成像技术的发展与展望[J]. 空间科学学报, 2021, 41(1):22-33.
Wang J Y, Li C L. Development and prospect of hyperspectral imager and its application[J]. Chinese Journal of Space Science, 2021, 41(1):22-33.
[7] Chen B H, Cheng H Y, Tseng Y S, et al. Two-pass bilateral smooth filtering for remote sensing imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19:8006405.
[8] Guo J, Xie R, Jin G. An efficient method for NMR data compression based on fast singular value decomposition[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(2):301-305.
[9] Zheng Y B, Huang T Z, Zhao X L, et al. Mixed noise removal in hyperspectral image via low-fibered-rank regularization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(1):734-749.
[10] Zhuang L, Lin C H, Figueiredo M A T, et al. Regularization para-meter selection in minimum volume hyperspectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(12):9858-9877.
[11] Yao J, Hong D, Xu L, et al. Sparsity-enhanced convolutional decomposition:A novel tensor-based paradigm for blind hyperspectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:5505014.
[12] Qin J, Lee H, Chi J T, et al. Blind hyperspectral unmixing based on graph total variation regularization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(4):3338-3351.
[13] Cruz-Guerrero I A, Campos-Delgado D U, Mejía-Rodríguez A R. Extended blind end-member and abundance estimation with spatial total variation for hyperspectral imaging[C]// 2021 43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).Mexico.IEEE, 2021: 1957-1960.
[14] Shao Y, Lan J, Zhang Y, et al. Spectral unmixing of hyperspectral remote sensing imagery via preserving the intrinsic structure inva-riant[J]. Sensors, 2018, 18(10):3528.
[15] Wang X, Zhong Y, Zhang L, et al. Spatial group sparsity regularized nonnegative matrix factorization for hyperspectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(11):6287-6304.
[16] Ekanayake E M M B, Weerasooriya H M H K, Ranasinghe D Y L, et al. Constrained nonnegative matrix factorization for blind hyperspectral unmixing incorporating endmember independence[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 1853, 14:11853-11869.
[17] Feng X R, Li H C, Li J, et al. Hyperspectral unmixing using sparsity-constrained deep nonnegative matrix factorization with total variation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(10):6245-6257.
[18] Qu K, Li Z, Wang C, et al. Hyperspectral unmixing using higher-order graph regularized NMF with adaptive feature selection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61:5511815.
[19] Schaepman M E, Jehle M, Hueni A, et al. Advanced radiometry measurements and earth science applications with the airborne prism experiment (APEX)[J]. Remote Sensing of Environment, 2015, 158:207-219.
[20] Yao J, Meng D, Zhao Q, et al. Nonconvex-sparsity and nonlocal-smoothness based blind hyperspectral unmixing[J]. IEEE Transactions on Image Processing:A Publication of the IEEE Signal Processing Society, 2019:2991-3006.
[21] Ghosh P, Roy S K, Koirala B, et al. Hyperspectral unmixing using transformer network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:5535116.
[1] 高昇, 陈富龙, 时丕龙, 周伟, 朱猛, 骆艳松, 杨青霞, 王琴. 九寨沟生物圈保护区大场景植被健康遥感精细监测与诠析——以长海为例[J]. 自然资源遥感, 2024, 36(2): 188-197.
[2] 李雷, 孙希延, 纪元法, 付文涛. 融合超像素和多属性形态学轮廓方法的高光谱图像分类[J]. 自然资源遥感, 2023, 35(4): 114-121.
[3] 曲海成, 王雅萱, 申磊. 多感受野特征与空谱注意力结合的高光谱图像超分辨率算法[J]. 自然资源遥感, 2022, 34(1): 43-52.
[4] 栗旭升, 刘玉锋, 陈冬花, 刘赛赛, 李虎. 结合图像特征的支持向量机高分一号云检测[J]. 国土资源遥感, 2020, 32(3): 55-62.
[5] 张兴航, 朱琳, 王威, 孟利山, 李小娟, 任应超. 基于对象的地裂缝分步提取方法研究与应用[J]. 国土资源遥感, 2019, 31(1): 87-94.
[6] 杨军, 裴剑杰. 一种改进的ICM遥感影像分割算法[J]. 国土资源遥感, 2018, 30(3): 18-25.
[7] 刘尚旺, 郜刘阳, 王博. 联合双边滤波器和小波阈值收缩去噪算法研究[J]. 国土资源遥感, 2018, 30(2): 114-124.
[8] 魏英娟, 郑雄伟, 雷兵, 甘宇航. 基于样本模型的高分一号遥感影像云雾自动提取[J]. 国土资源遥感, 2017, 29(s1): 39-45.
[9] 张永梅, 杨飞, 许静. 改进的变长夹角链码算法及在码头识别中的应用[J]. 国土资源遥感, 2016, 28(4): 164-169.
[10] 李孚煜, 叶发茂. 基于SIFT的遥感图像配准技术综述[J]. 国土资源遥感, 2016, 28(2): 14-20.
[11] 刘鹏程. 基于水平集理论的海岸线轮廓特征提取[J]. 国土资源遥感, 2015, 27(2): 75-79.
[12] 常睿春, 王璐, 王茂芝. FastICA在高光谱遥感矿物信息提取中的应用[J]. 国土资源遥感, 2013, 25(4): 129-132.
[13] 李婷, 詹庆明, 喻亮. 基于地物特征提取的车载激光点云数据分类方法[J]. 国土资源遥感, 2012, 24(1): 17-21.
[14] 崔林林, 罗毅, 包安明. NWFE结合纹理特征的SVM土地覆被分类方法研究[J]. 国土资源遥感, 2012, 24(1): 36-42.
[15] 沈照庆, 陶建斌. 基于模糊核主成分分析的高光谱遥感影像特征提取研究[J]. 国土资源遥感, 2009, 21(3): 41-44.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发