Please wait a minute...
 
自然资源遥感  2025, Vol. 37 Issue (6): 241-250    DOI: 10.6046/zrzyyg.2024355
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
基于长时序Landsat的南方丘陵山地带森林扰动分析
裴度1(), 袁武彬2, 李恒凯1()
1.江西理工大学土木与测绘工程学院,赣州 341000
2.江西省自然资源事业发展中心,南昌 330025
Forest disturbances in the South China hilly and mountainous belt based on long time-series Landsat data
PEI Du1(), YUAN Wubin2, LI Hengkai1()
1. Jiangxi University of Science and Technology, School of Civil and Surveying & Mapping Engineering, Ganzhou 341000, China
2. Jiangxi Provincial Natural Resources Development Center, Nanchang 330025, China
全文: PDF(5474 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

南方丘陵山地带作为中国“三区四带”生态系统保护和修复重大工程分布地之一,具有世界同纬度带上面积最大、保存最完整的中亚热带森林生态系统,发挥着保障中国华南和西南地区生态安全的作用。该研究基于谷歌地球引擎平台,结合LandTrendr算法、J-M距离对研究区域扰动进行初步监测,并将随机森林应用于相关干扰输出,对1985—2022年间该区域的森林扰动进行了监测与分析。研究发现,1985—2022年森林干扰总面积为38 564.62 km2,其中武夷山森林(12 040.27 km2)>南岭山地森林(11 820.79 km2)>湘桂岩溶地区(8 228.97 km2)>南方丘陵山地带矿山(6 474.59 km2); 研究基于得到的1985—2022年间森林损失数据集,分析了南方丘陵山地带森林干扰时空变化特征,发现南方丘陵山地带的森林干扰在空间和时间上均表现出显著的特征。空间上,森林扰动具有明显的地理集聚特征; 时间上,4个生态修复工程的森林损失面积经历了多个阶段的变化,尽管关键转折点和年际变化规律相似,但由于森林资源、气候和经济条件的差异,损失面积的大小和变化趋势也存在差异。此外,林业政策的实施在一定程度上影响了森林损失的趋势。研究为南方丘陵山地带的森林生态系统管理等提供了科学依据和决策参考。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
裴度
袁武彬
李恒凯
关键词 森林扰动南方丘陵山地带LandTrendr算法时空分布特征谷歌地球引擎(GEE)    
Abstract

The South China hilly and mountainous belt is one of the “three regions and four belts” involved in China's major ecosystem conservation and restoration program. This belt hosts the largest and most well-preserved middle subtropical forest ecosystem at the same latitudes globally, playing a crucial role in ensuring the ecological security in South and Southwest China. Based on the Google Earth Engine (GEE) platform, this study conducted preliminary monitoring of disturbances in this belt using the LandTrendr algorithm and the Jeffries-Matusita (JM) distance. It further applied the random forest algorithm to relevant disturbance outputs, enabling the monitoring and analysis of forest disturbances in this belt from 1985 to 2022. The results indicate that the total forest disturbance area in this belt reached 38 564.62 km2 during the study period. Specifically, the disturbance areas of four ecological restoration projects decreased in the following order: Wuyi Mountains forests (12 040.27 km2), Nanling Mountains forests (11 820.79 km2), Hunan and Guangxi karst areas (8 228.97 km2), and mining areas (6 474.59 km2). Based on the 38-year forest loss dataset, this study analyzed the spatiotemporal variations in forest disturbances within this belt, revealing significant spatiotemporal forest disturbances. Spatially, forest disturbances were characterized by distinct geographic clustering. Temporally, the forest loss areas under four ecological restoration projects experienced several stages of change. Despite similar critical transition points and interannual variation patterns, differences in forest resources, climate, and economic conditions led to variations in the areas and trends of forest loss. Besides, the implementation of forestry policies somewhat influenced the forest loss trend. Overall, this study provides a scientific basis and decision-making reference for the management of forest ecosystems within this belt.

Key wordsforest disturbance    South China hilly and mountainous belt    LandTrendr algorithm    spatiotemporal distribution    Google Earth Engine (GEE)
收稿日期: 2024-11-02      出版日期: 2025-12-31
ZTFLH:  S771.8  
  TP79  
基金资助:江西省自然科学基金重点项目“顾及多光谱通道信息的稀土矿区典型地物高分辨率遥感识别模型”(20232ACB203025);江西省自然资源厅科技项目“基于VR/AR及实景三维的生态修复虚拟仿真研究项目”(ZRKJ20232523)
通讯作者: 李恒凯(1980-),男,教授,主要从事遥感与地理信息工程研究。Email: giskai@126.com
作者简介: 裴度(1999-),男,硕士生,研究方向为生态GIS与遥感技术研究。Email: 6120220123@mail.jxust.edu.cn
引用本文:   
裴度, 袁武彬, 李恒凯. 基于长时序Landsat的南方丘陵山地带森林扰动分析[J]. 自然资源遥感, 2025, 37(6): 241-250.
PEI Du, YUAN Wubin, LI Hengkai. Forest disturbances in the South China hilly and mountainous belt based on long time-series Landsat data. Remote Sensing for Natural Resources, 2025, 37(6): 241-250.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2024355      或      https://www.gtzyyg.com/CN/Y2025/V37/I6/241
Fig.1  Landsat时间数量分布图
参数 描述 取值
maxSegments 最大分段数 8
SpikeThreshold 如果相邻时间点指数值差异百分比小于该值,则被认为是异常值 0.9
vertxCountOvershoot 在初始阶段的潜在节点回归中可以超过的节点数 0
preventOneYearRecovery 是否阻止一年后恢复的情况
recoveryThreshold 如果某个分割段的恢复率大于该值的倒数,那么这个分割段将会被移除 0.5
pvalThreshold 回归分析中F检验的p值,超过该值的话,则认为该像元没有发生变化 0.05
bestModelProportion 简单模型的选择规则,如果超过该值,则被选中 0.75
minObservationsNeeded 拟合中需要的最少观测数 6
Tab.1  LandTrendr算法参数设置
指数 公式
归一化植被指数
(normalized difference vegetation index,NDVI)
$NDVI=\frac{(NIR-RED)}{(NIR+RED)}$
增强型植被指数
(vegetation enhancement index,EVI)
$EVI=\frac{(NIR-RED)\times 2.5}{(NIR+6\times RED-7.5\times BLUE+1)}$
归一化燃烧指数
(normalized burning index,NBR)
$NBR=\frac{(NIR-SWIR2)}{(NIR+SWIR2)}$
缨帽变换亮度指数
(TCT conversion brightness index,TCB)
$\begin{array}{l}TCW=0.204\mathrm{?}3BLUE+0.415\mathrm{?}8GREEN+0.552\mathrm{?}4RED+0.574\mathrm{?}1NIR+\\ 0.312\mathrm{?}4SWIR1+0.230\mathrm{?}3SWIR2\end{array}$
缨帽变换湿度指数
(TCT conversion humidity index,TCW)
$\begin{array}{l}TCW=0.031\mathrm{?}5BLUE+0.202\mathrm{?}1GREEN+0.310\mathrm{?}2RED+0.159\mathrm{?}4NIR-\\ 0.680\mathrm{?}6SWIR1-0.610\mathrm{?}9SWIR2\end{array}$
缨帽变换绿度指数
(TCT conversion greenness index,TCG)
$\begin{array}{l}TCG=-0.160\mathrm{?}3BLUE-0.281\mathrm{?}9GREEN-0.493\mathrm{?}4RED+0.794\mathrm{?}0NIR-\\ 0.000\mathrm{?}2SWIR1-0.144\mathrm{?}6SWIR2\end{array}$
Tab.2  光谱指数计算公式
Fig.2  J-M距离热力图
Fig.3  扰动结果对比
Fig.4  1985—2022年4个生态修复工程森林扰动空间分布特征
Fig.5  1985—2022年4个生态修复工程森林扰动年际变化特征
Fig.6  主要林业政策时间线与森林损失面积的年际变化
[1] Watson J E M, Evans T, Venter O, et al. The exceptional value of intact forest ecosystems[J]. Nature Ecology & Evolution, 2018, 2(4):599-610.
[2] Shen J, Chen G, Hua J, et al. Contrasting forest loss and gain patterns in subtropical China detected using an integrated LandTrendr and machine-learning method[J]. Remote Sensing, 2022, 14(13):3238.
doi: 10.3390/rs14133238
[3] Chen C, Park T, Wang X, et al. China and India lead in greening of the world through land-use management[J]. Nature Sustainability, 2019,2:122-129.
[4] Zeng W, Tomppo E, Healey S P, et al. The national forest inventory in China:History - results - international context[J]. Forest Ecosystems, 2015, 2(1):23.
doi: 10.1186/s40663-015-0047-2
[5] 潘丹, 陈寰, 孔凡斌. 1949年以来中国林业政策的演进特征及其规律研究——基于283个涉林规范性文件文本的量化分析[J]. 中国农村经济, 2019(7):89-108.
Pan D, Chen H, Kong F B. The evolution of forestry policies since 1949:An quantitative analysis based on 283 texts of forest-related normative policy documents[J]. Chinese Rural Economy, 2019(7):89-108.
[6] Zhu Z, Woodcock C E, Olofsson P. Continuous monitoring of forest disturbance using all available Landsat imagery[J]. Remote Sensing of Environment, 2012,122:75-91.
[7] Masek J G, Goward S N, Kennedy R E, et al. United states forest disturbance trends observed using landsat time series[J]. Ecosystems, 2013, 16(6):1087-1104.
doi: 10.1007/s10021-013-9669-9
[8] Wulder M A, White J C, Loveland T R, et al. The global Landsat archive:Status,consolidation,and direction[J]. Remote Sensing of Environment, 2016,185:271-283.
[9] Huang C, Goward S N, Masek J G, et al. An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks[J]. Remote Sensing of Environment, 2010, 114(1):183-198.
doi: 10.1016/j.rse.2009.08.017
[10] Verbesselt J, Hyndman R, Newnham G, et al. Detecting trend and seasonal changes in satellite image time series[J]. Remote Sensing of Environment, 2010, 114(1):106-115.
doi: 10.1016/j.rse.2009.08.014
[11] Zhu Z, Woodcock C E. Continuous change detection and classification of land cover using all available Landsat data[J]. Remote Sensing of Environment, 2014,144:152-171.
[12] Kennedy R E, Yang Z, Cohen W B. Detecting trends in forest disturbance and recovery using yearly Landsat time series:1.LandTrendr—Temporal segmentation algorithms[J]. Remote Sensing of Environment, 2010, 114(12):2897-2910.
doi: 10.1016/j.rse.2010.07.008
[13] Cohen W B, Yang Z, Kennedy R. Detecting trends in forest disturbance and recovery using yearly Landsat time series:2.TimeSync—Tools for calibration and validation[J]. Remote Sensing of Environment, 2010, 114(12):2911-2924.
doi: 10.1016/j.rse.2010.07.010
[14] Cohen W B, Healey S P, Yang Z, et al. Diversity of algorithm and spectral band inputs improves landsat monitoring of forest disturbance[J]. Remote Sensing, 2020, 12(10):1673.
doi: 10.3390/rs12101673
[15] 王李娟, 孔钰如, 杨小冬, 等. 基于特征优选随机森林算法的农耕区土地利用分类[J]. 农业工程学报, 2020, 36(4):244-250.
Wang L J, Kong Y R, Yang X D, et al. Classification of land use in farming areas based on feature optimization random forest algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(4):244-250.
[16] Chen D, Stow D A, Gong P. Examining the effect of spatial resolution and texture window size on classification accuracy:An urban environment case[J]. International Journal of Remote Sensing, 2004, 25(11):2177-2192.
doi: 10.1080/01431160310001618464
[17] Sun K, Geng X, Ji L. A new sparsity-based band selection method for target detection of hyperspectral image[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(2):329-333.
doi: 10.1109/LGRS.2014.2337957
[18] MAUSEL P W. Optimum band selection for supervised classification of multispectral data[J/OL]. Photogrammetric Engineering & Remote Sensing, 1990, 56(1):55-60.
[19] Healey S P, Cohen W B, Yang Z, et al. Mapping forest change using stacked generalization:An ensemble approach[J]. Remote Sensing of Environment, 2018,204:717-728.
[20] 傅伯杰, 王晓峰, 冯晓明, 等. 国家生态屏障区生态系统评估[M]. 北京: 科学出版社, 2017.
Fu B J, Wang X F, Feng X M. Ecosystem assessment of national ecological barrier area[M]. Beijing: Science Press, 2017.
[21] Yang J, Huang X. The 30 m annual land cover datasets and its dynamics in China from 1985 to 2022[DS/OL]//Zenodo (CERN European Organization for Nuclear Research).(2023-08-01).
[22] Liu L, Zhang X, Zhao T. GLC_FCS30D:The first global 30-m land-cover dynamic monitoring product with fine classification system from 1985 to 2022[DS/OL]//Zenodo (CERN European Organization for Nuclear Research).(2023-08-11).
[23] el Rosario González-Moradas M, Viveen W, Andrés Vidal-Villalobos R, et al. A performance comparison of SRTM v.3.0,AW3D30,ASTER GDEM3,Copernicus and TanDEM-X for tectonogeomorphic analysis in the South American Andes[J]. Catena, 2023,228:107160.
[24] Li P, Li H, Si B, et al. Mapping planted forest age using LandTrendr algorithm and Landsat5-8 on the Loess Plateau,China[J]. Agricultural and Forest Meteorology, 2024,344:109795.
[25] Kennedy R E, Yang Z, Cohen W B, et al. Spatial and temporal patterns of forest disturbance and regrowth within the area of the Northwest Forest Plan[J]. Remote Sensing of Environment, 2012,122:117-133.
[26] Braswell B H, Schimel D S, Linder E, et al. The response of global terrestrial ecosystems to interannual temperature variability[J]. Science, 1997, 278(5339):870-873.
doi: 10.1126/science.278.5339.870
[27] Pan N, Feng X, Fu B, et al. Increasing global vegetation browning hidden in overall vegetation greening:Insights from time-varying trends[J]. Remote Sensing of Environment, 2018,214:59-72.
[28] Zanchetta A, Bitelli G, Karnieli A. Monitoring desertification by remote sensing using the Tasselled Cap transform for long-term change detection[J]. Natural Hazards, 2016, 83(1):223-237.
doi: 10.1007/s11069-016-2342-9
[29] 李亚飞, 刘高焕. 澜沧江流域植被覆盖变化特征及其与气候因子的关系[J]. 资源科学, 2012, 34(7):1214-1221.
Li Y F, Liu G H. Characteristics of vegetation cover changes in lantsang basin based on MODIS vegetation index products (MOD13)[J]. Resources Science, 2012, 34(7):1214-1221.
[30] Wang C, Ma N, Ming Y, et al. Classification of hyperspectral imagery with a 3D convolutional neural network and J-M distance[J]. Advances in Space Research, 2019, 64(4):886-899.
doi: 10.1016/j.asr.2019.05.005
[31] Nguyen T H, Jones S D, Soto-Berelov M, et al. A spatial and temporal analysis of forest dynamics using Landsat time-series[J]. Remote Sensing of Environment, 2018,217:461-475.
[32] Breiman L. Random forests[J]. Machine Learning, 2017,45:5-32.
[33] 朱玮晗, 林金煌, 杨舒棋, 等. 福建省县域森林损失时空演变特征及其影响因素分析[J]. 生态与农村环境学报, 2024, 40(4):499-512.
Zhu W H, Lin J H, Yang S Q, et al. Characterization of spatial and temporal evolution of forest loss in counties in Fujian Province and analysis of its influencing factors[J]. Journal of Ecology and Rural Environment, 2024, 40(4):499-512.
[34] 刘双, 阮宏华. 基于地统计学的广东省和广西省森林生物量和NPP空间格局分析[J]. 生态学杂志, 2013, 32(9):2502-2509.
Liu S, Ruan H H. Spatial pattern analysis of forest biomass and NPP in Guangdong and Guangxi provinces of South China based on geostatistics[J]. Chinese Journal of Ecology, 2013, 32(9):2502-2509.
[35] Liu C, Wang S, Liu H, et al. Why did the 1980s’ reform of collective forestland tenure in Southern China fail?[J]. Forest Policy and Economics, 2017,83:131-141.
[36] 韦西勤. 我国速生产林现状与存在的问题[J]. 林业调查规划, 2010(5):115-118.
Wei X Q. Current situation and problems of fast-growing and high-yielding plantation in China High-yielding plantation in China[J]. Forest Inventory and Planning, 2010(5):115-118.
[1] 陈媛媛, 严铄婷, 颜瑾, 郑思齐, 王昊, 朱杰. 基于Landsat时间序列影像和LandTrendr算法的浙江省丽水市森林扰动监测[J]. 自然资源遥感, 2025, 37(1): 179-187.
[2] 杨辰, 沈润平. 森林扰动遥感监测研究进展[J]. 国土资源遥感, 2015, 27(1): 1-8.
[3] 祝善友, 张莹, 张海龙, 曹云, 张桂欣. Landsat卫星图像用于大面积森林扰动监测的研究进展[J]. 国土资源遥感, 2014, 26(2): 5-10.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发