Please wait a minute...
 
自然资源遥感  2025, Vol. 37 Issue (1): 179-187    DOI: 10.6046/zrzyyg.2023285
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
基于Landsat时间序列影像和LandTrendr算法的浙江省丽水市森林扰动监测
陈媛媛1(), 严铄婷1, 颜瑾1, 郑思齐1, 王昊1, 朱杰1,2
1.南京林业大学土木工程学院,南京 210037
2.实景地理环境安徽省重点实验室,滁州 239004
Forest disturbance monitoring in Lishui City, China based on Landsat time series images and the LandTrendr algorithm
CHEN Yuanyuan1(), YAN Shuoting1, YAN Jin1, ZHENG Siqi1, WANG Hao1, ZHU Jie1,2
1. College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
2. Anhui Province Key Laboratory of Physical Geographic Environment, Chuzhou 239004, China
全文: PDF(5636 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

采用先进技术手段快速准确地获取森林扰动情况,对维护森林生态安全具有重要意义。该文以浙江省丽水市为研究区域,获取了1992—2022年6—8月所有的Landsat影像,基于GEE平台上的LandTrendr算法分析了丽水市森林扰动特征,对丽水市各县市的森林扰动情况进行时空分析,并探讨了坡度、海拔和降水等自然因素对森林扰动的影响规律。研究发现,丽水市在1992—2022年30 a间总体上呈现出植被干扰减少的趋势; 丽水市西北部的龙泉市和遂昌县是森林扰动最严重的地区,2008年是森林扰动最大的一年; 此外,坡度平缓和海拔高的地区以及降水量减少的年份都容易发生森林扰动。研究可为丽水市森林资源的保护和管理提供科学依据和参考意见。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈媛媛
严铄婷
颜瑾
郑思齐
王昊
朱杰
关键词 时间序列LandTrendr谷歌地球引擎(GEE)森林扰动    
Abstract

The rapid and accurate acquisition of forest disturbances using advanced technological methods is of great significance for maintaining forest ecological security. In this study, all Landsat images of Lishui City, China from June to August from 1992 to 2022 were acquired. Based on the LandTrendr algorithm on the Google Earth Engine (GEE) platform, this study analyzed the characteristics of forest disturbances in the city. A spatiotemporal analysis of forest disturbances across various counties and cities within Lishui was conducted, and the influence patterns of natural factors including slope, elevation, and precipitation on forest disturbances were also explored. The results indicate that vegetation disturbances in Lishui City generally decreased over the 30 years. Spatially, the most severe forest disturbances occurred in Longquan City and Suichang County located in northwestern Lishui City. Temporally, 2008 witnessed the most severe forest disturbances. In addition, areas with gentle slopes and high elevations, as well as years with reduced precipitation, were more sensitive to forest disturbance over the 30 years. This study will provide a scientific basis and reference for the preservation and management of forest resources in Lishui City.

Key wordstime series    LandTrendr    Google Earth Engine (GEE)    forest disturbance
收稿日期: 2023-09-12      出版日期: 2025-02-17
ZTFLH:  TP79  
基金资助:国家自然科学基金项目“顾及空间异质性的城市用地邻里模式矢量CA建模与模拟”(42101430);江苏省自然科学基金资助项目“顾及散射机理的极化SAR沿海湿地特征提取与分类识别”(BK20180779);实景地理环境安徽省重点实验室开放基金项目“顾及用地管控特征的矢量元胞自动机建模与模拟研究”(2022PGE006)
作者简介: 陈媛媛(1988-),女,博士,讲师,主要从事森林信息提取、土地利用/土地覆被分类等研究。Email: cheny@njfu.edu.cn
引用本文:   
陈媛媛, 严铄婷, 颜瑾, 郑思齐, 王昊, 朱杰. 基于Landsat时间序列影像和LandTrendr算法的浙江省丽水市森林扰动监测[J]. 自然资源遥感, 2025, 37(1): 179-187.
CHEN Yuanyuan, YAN Shuoting, YAN Jin, ZHENG Siqi, WANG Hao, ZHU Jie. Forest disturbance monitoring in Lishui City, China based on Landsat time series images and the LandTrendr algorithm. Remote Sensing for Natural Resources, 2025, 37(1): 179-187.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2023285      或      https://www.gtzyyg.com/CN/Y2025/V37/I1/179
Fig.1  研究区土地利用分布情况
参数 参数含义 取值
Max Segments 分割最大单元数目 7
Spike Threshold 初始阶段拟合的折点数 0.9
Vertex Count Overshoot 可超过的顶点数量 3
Prevent One Year
Recovery
是否阻止一年后恢复的情况 True
Recovery Threshold 恢复是否具有上升(正)趋势 0.5
p-value Threshold 回归分析中F检验的p值,超过该值的话,则认为该像元没有发生变化 0.05
Best Model Proportion 简单模型的选择规则,如果超过该值,则被选中 0.75
Min Observations Needed 拟合中需要的最少观测数 6
Tab.1  LandTrendr参数
Fig.2  LandTrendr干扰持续时间及2007—2009年样点区域目视解译
Fig.3  LandTrendr发生干扰的年份及样点区域目视解译
Fig.4  森林扰动精度评估
Fig.5  丽水市森林干扰总体分布
Fig.6  丽水市历年干扰情况变化特征
Fig.7  丽水市各市区县干扰变化特征
Fig.8  丽水市不同坡度森林干扰情况
Fig.9  丽水市不同海拔森林干扰情况
Fig.10  丽水市年干扰面积比和年均降水量随时间变化特征
[1] De Marzo T, Pflugmacher D, Baumann M, et al. Characterizing forest disturbances across the Argentine Dry Chaco based on Landsat time series[J]. International Journal of Applied Earth Observation and Geoinformation, 2021,98:102310.
[2] Chen Y, Luo G, Maisupova B, et al. Carbon budget from forest land use and management in Central Asia during 1961—2010[J]. Agricultural and Forest Meteorology, 2016,221:131-141.
[3] He L H, Zhou Y K, Yang Q. Characteristics of spatial-temporal changes in vegetation coverage in Yan’an region during 2000—2013[J]. Journal of Arid Land Resources and Environment, 2015, 29(11):174-179.
[4] Almeida D R A, Stark S C, Chazdon R, et al. The effectiveness of LiDAR remote sensing for monitoring forest cover attributes and landscape restoration[J]. Forest Ecology and Management, 2019,438:34-43.
[5] Li M, Zuo S, Su Y, et al. An approach integrating multi-source data with LandTrendr algorithm for refining forest recovery detection[J]. Remote Sensing, 2023, 15(10):2667.
[6] 王燕, 朱婷茹, 何立恒. 森林资源遥感调查研究进展[J]. 现代测绘, 2022, 45(6):1-6,60.
Wang Y, Zhu T R, He L H. Research progress on forest resources inventory based on remote sensing[J]. Modern Surveying and Mapping, 2022, 45(6):1-6,60.
[7] 王平. 南通市生态环境遥感监测及其动态变化研究[J]. 环境监控与预警, 2012, 4(6):42-45.
Wang P. Study on dynamic changes of remote sensing and application to ecological environment monitoring in Nantong[J]. Environmental Monitoring and Forewarning, 2012, 4(6):42-45.
[8] 杨强, 王婷婷, 陈昊, 等. 基于MODIS EVI数据的锡林郭勒盟植被覆盖度变化特征[J]. 农业工程学报, 2015, 31(22):191-198,315.
Yang Q, Wang T T, Chen H, et al. Characteristics of vegetation cover change in Xilin Gol League based on MODIS EVI data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(22):191-198,315.
[9] 钟莉, 陈芸芝, 汪小钦. 基于Landsat时序数据的森林干扰监测[J]. 林业科学, 2020, 56(5):80-88.
Zhong L, Chen Y Z, Wang X Q. Forest disturbance monitoring based on time series of landsat data[J]. Scientia Silvae Sinicae, 2020, 56(5):80-88.
[10] 沈文娟, 李明诗, 黄成全. 长时间序列多源遥感数据的森林干扰监测算法研究进展[J]. 遥感学报, 2018, 22(6):1005-1022.
Shen W J, Li M S, Huang C Q. Review of remote sensing algorithms for monitoring forest disturbance from time series and multi-source data fusion[J]. Journal of Remote Sensing, 2018, 22(6):1005-1022.
[11] Cohen W B, Yang Z, Kennedy R. Detecting trends in forest disturbance and recovery using yearly Landsat time series:2.TimeSync—Tools for calibration and validation[J]. Remote Sensing of Environment, 2010, 114(12):2911-2924.
[12] Verbesselt J, Zeileis A, Herold M. Near real-time disturbance detection using satellite image time series[J]. Remote Sensing of Environment, 2012,123:98-108.
[13] Zhu Z, Woodcock C E. Continuous change detection and classification of land cover using all available Landsat data[J]. Remote Sensing of Environment, 2014,144:152-171.
[14] 秦乐, 何鹏, 马玉忠, 等. 基于时空谱特征的遥感影像时间序列变化检测[J]. 自然资源遥感, 2022, 34(4):105-112.doi:10.6046/zrzyyg.2021351.
Qin L, He P, Ma Y Z, et al. Change detection of satellite time series images based on spatial-temporal-spectral features[J]. Remote Sensing for Natural Resources, 2022, 34(4):105-112.doi:10.6046/zrzyyg.2021351.
[15] Huang C, Goward S N, Masek J G, et al. An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks[J]. Remote Sensing of Environment, 2010, 114(1):183-198.
[16] 苏文瑞, 田佳, 杨泽康, 等. 基于GEE和LandTrendr的宁夏“三山” 森林干扰监测[J]. 中国水土保持科学(中英文), 2022, 20(6):41-49.
Su W R, Tian J, Yang Z K, et al. Monitoring of forest disturbance in “Three Mountains” of Ningxia based on GEE and LandTrendr[J]. Science of Soil and Water Conservation, 2022, 20(6):41-49.
[17] DeVries B, Verbesselt J, Kooistra L, et al. Robust monitoring of small-scale forest disturbances in a tropical montane forest using Landsat time series[J]. Remote Sensing of Environment, 2015,161:107-121.
[18] Mugiraneza T, Nascetti A, Ban Y. Continuous monitoring of urban land cover change trajectories with landsat time series and LandTrendr-Google Earth Engine cloud computing[J]. Remote Sensing, 2020, 12(18):2883.
[19] Kennedy R, Yang Z, Gorelick N, et al. Implementation of the LandTrendr algorithm on Google Earth Engine[J]. Remote Sensing, 2018, 10(5):691.
[20] 官王飞, 徐建恩, 叶珊, 等. 丽水市“十三五” 期间林木采伐现状分析[J]. 福建林业科技, 2022, 49(3):111-115,124.
Guan W F, Xu J E, Ye S, et al. Current situation analysis of forest cutting in Lishui City during the 13th Five-Year Plan[J]. Journal of Fujian Forestry Science and Technology, 2022, 49(3):111-115,124.
[21] Shen J, Chen G, Hua J, et al. Contrasting forest loss and gain patterns in subtropical China detected using an integrated LandTrendr and machine-learning method[J]. Remote Sensing, 2022, 14(13):3238.
[22] 王塞, 王思诗, 樊风雷. 基于时间序列分割算法的雅鲁藏布江流域NDVI(1985—2018)变化模式研究[J]. 生态学报,2020, 40(19):6863-6871.
Wang S, Wang S S, Fan F L. Change patterns of NDVI (1985—2018) in the Yarlung Zangbo River basin of China based on time series segmentation algorithm[J]. Acta Ecologica Sinica,2020, 40(19):6863-6871.
[23] 于森, 贾明明, 陈高, 等. 基于LandTrendr算法海南东寨港红树林扰动研究[J]. 自然资源遥感, 2023, 35(2):42-49.doi:10.6046/zrzyyg.2022235.
Yu S, Jia M M, Chen G, et al. A study of the disturbance to mangrove forests in Dongzhaigang,Hainan based on LandTrendr[J]. Remote Sensing for Natural Resources, 2023, 35(2):42-49.doi:10.6046/zrzyyg.2022235.
[24] Qiu D, Liang Y, Shang R, et al. Improving LandTrendr forest disturbance mapping in China using multi-season observations and multispectral indices[J]. Remote Sensing, 2023, 15(9):2381.
[25] 杨辰, 沈润平. 森林扰动遥感监测研究进展[J]. 国土资源遥感, 2015, 27(1):1-8.doi:10.6046/gtzyyg.2015.01.01.
Yang C, Shen R P. Progress in the study of forest disturbance by remote sensing[J]. Remote Sensing for Land and Resources, 2015, 27(1):1-8.doi:10.6046/gtzyyg.2015.01.01.
[26] Kennedy R E, Yang Z, Cohen W B. Detecting trends in forest disturbance and recovery using yearly Landsat time series:1.LandTrendr—Temporal segmentation algorithms[J]. Remote Sensing of Environment, 2010, 114(12):2897-2910.
[27] 殷崎栋, 柳彩霞, 田野. 基于Landsat时序影像和LandTrendr算法的森林保护区植被扰动研究——以陕西柴松和太白山保护区为例[J]. 生态学报, 2020, 40(20):7343-7352.
Yin Q D, Liu C X, Tian Y. Detecting dynamics of vegetation disturbance in forest natural reserve using Landsat imagery and LandTrendr algorithm:The case of Chaisong and Taibaishan Natural Reserves in Shaanxi,China[J]. Acta Ecologica Sinica, 2020, 40(20):7343-7352.
[28] 陈海喜, 钟九生, 兰安军, 等. 基于地形地貌因子的贵州省NDVI时空变化分析[J]. 贵州科学, 2019, 37(2):36-43.
Chen H X, Zhong J S, Lan A J, et al. Analysis of temporal and spatial variation of NDVI in Guizhou Province based on landform factors[J]. Guizhou Science, 2019, 37(2):36-43.
[29] 维基百科编者. 丽水市[G/OL].维基百科,2024(20240201)[2024-02-01].https://zh.wikipedia.org/w/index.php?title=%E4%B8%BD%E6%B0%B4%E5%B8%82&o|did=80740233.
Wikipedia editor. Lishui CityWikipedia,2024 (20240201) [2024-02-01].https://zh.wikipedia.org/w/index.php?title=%E4%B8%BD%E6%B0%B4%E5%B8%82&o|did=80740233.
[30] 尹雄, 陈帮乾, 古晓威, 等. 基于GEE平台LandTrendr算法的海南岛森林扰动快速监测方法及分析[J]. 地球信息科学学报, 2023, 25(10):2093-2106.
doi: 10.12082/dqxxkx.2023.220691
Yin X, Chen B Q, Gu X W, et al. Rapid monitoring of tropical forest disturbance in Hainan Island based on GEE platform and LandTrendr algorithm[J]. Journal of Geo-Information Science, 2023, 25(10):2093-2106.
[1] 陈志洋, 毛德华, 王宗明, 林楠, 贾明明, 任春颖, 王铭. 基于时序Sentinel-2数据的江汉平原养殖池提取[J]. 自然资源遥感, 2025, 37(1): 169-178.
[2] 凌肖露, 陈朝荣, 郭维栋, 秦凯, 张锦龙. ESA CCI土壤湿度资料在中国东部的综合评估[J]. 自然资源遥感, 2024, 36(4): 92-106.
[3] 罗维, 李修华, 覃火娟, 张木清, 王泽平, 蒋柱辉. 基于多源卫星遥感影像的广西中南部地区甘蔗识别及产量预测[J]. 自然资源遥感, 2024, 36(3): 248-258.
[4] 易邦进, 黄成, 傅涛, 孙技星, 朱宝权, 钟成. 基于SBAS-InSAR 技术的中缅边境山区地质灾害隐患探测[J]. 自然资源遥感, 2023, 35(4): 186-191.
[5] 于森, 贾明明, 陈高, 鲁莹莹, 李毅, 张博淳, 路春燕, 李慧颖. 基于LandTrendr算法海南东寨港红树林扰动研究[J]. 自然资源遥感, 2023, 35(2): 42-49.
[6] 秦乐, 何鹏, 马玉忠, 刘建强, 杨彬. 基于时空谱特征的遥感影像时间序列变化检测[J]. 自然资源遥感, 2022, 34(4): 105-112.
[7] 曾晖, 任华忠, 朱金顺, 郭金鑫, 叶昕, 滕沅建, 聂婧, 秦其明. 叙利亚战争对植被的影响[J]. 自然资源遥感, 2022, 34(3): 121-128.
[8] 骆泓鉴, 明冬萍, 徐录. 基于GEE的遥感生态指数时序计算[J]. 自然资源遥感, 2022, 34(2): 271-277.
[9] 李伟光, 侯美亭. 植被遥感时间序列数据重建方法简述及示例分析[J]. 自然资源遥感, 2022, 34(1): 1-9.
[10] 宋奇, 冯春晖, 马自强, 王楠, 纪文君, 彭杰. 基于1990—2019年Landsat影像的干旱区绿洲土地利用变化与模拟[J]. 自然资源遥感, 2022, 34(1): 198-209.
[11] 钞振华, 车明亮, 侯胜芳. 基于时间序列遥感数据植被物候信息提取软件发展现状[J]. 自然资源遥感, 2021, 33(4): 19-25.
[12] 赖佩玉, 黄静, 韩旭军, 马明国. 基于GEE的三峡蓄水对重庆地表水和植被影响研究[J]. 自然资源遥感, 2021, 33(4): 227-234.
[13] 王德军, 姜琦刚, 李远华, 关海涛, 赵鹏飞, 习靖. 基于Sentinel-2A/B时序数据与随机森林算法的农耕区土地利用分类[J]. 国土资源遥感, 2020, 32(4): 236-243.
[14] 孙超, 陈振杰, 王贝贝. 基于SAR时间序列的建设用地扩展监测——以常州市新北区为例[J]. 国土资源遥感, 2020, 32(4): 154-162.
[15] 杨玉婷, 陈海兰, 左家旗. 1990—2017年间杭州市不透水面比例遥感监测[J]. 国土资源遥感, 2020, 32(2): 241-250.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发