Please wait a minute...
 
自然资源遥感  2022, Vol. 34 Issue (3): 121-128    DOI: 10.6046/zrzyyg.2021233
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
叙利亚战争对植被的影响
曾晖1(), 任华忠1,2(), 朱金顺1, 郭金鑫1, 叶昕1, 滕沅建1, 聂婧1, 秦其明1,2
1.北京大学地球与空间科学学院遥感与地理信息系统研究所,北京 100871
2.空间信息集成与3S工程应用北京市重点实验室(北京大学),北京 100871
Impacts of the Syrian Civil War on vegetation
ZENG Hui1(), REN Huazhong1,2(), ZHU Jinshun1, GUO Jinxin1, YE Xin1, TENG Yuanjian1, NIE Jing1, QIN Qiming1,2
1. Institute of Remote Sensing and Geographic Information System, School of Earth and Space Sciences, Peking University, Beijing 100871, China
2. Beijing Key Laboratory of Spatial Information Integration and Its Application, Peking University, Beijing 100871, China
全文: PDF(4139 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

战争不仅会造成大量的人员伤亡和经济损失,还可能对环境带来不利影响。利用2001—2018年长时间序列卫星遥感数据探究叙利亚地区植被生长对战争所引起环境变化的响应,结果表明,叙利亚战争冲突最为激烈区域的植被指数存在较为明显的下降趋势,从战争开始的2011—2015年,土地类型变化并不显著,但在2015—2018年之间,土地类型发生了较大的变化。18 a间,草地面积减少了10.08%,农作物种植区面积减少21.87%。研究进一步探索了人为因素对植被状态的影响,发现东部幼发拉底河两岸及延伸区域受人为因素影响最为显著。研究揭示了战争给植被生长带来的负面影响,对于军事冲突地区粮食安全等方面研究与战略制定具有参考意义。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曾晖
任华忠
朱金顺
郭金鑫
叶昕
滕沅建
聂婧
秦其明
关键词 NDVI时间序列植被叙利亚战争    
Abstract

Besides numerous casualties and economic losses, wars may cause damage to the environment. Using a long time series of satellite remote sensing data from 2001 to 2018, this study explored the response of vegetation growth to the environmental changes in Syria caused by the Syrian Civil War. The results are as follows. The vegetation index significantly decreased in regions that experienced the most intense conflict in the war. The land types changed slightly from 2011 when the war started to 2015 but changed significantly from 2015 to 2018, with the grassland area decreasing by 10.08% and the crop planting area decreasing by 21.87%. This study further explored the impacts of human activities on the vegetation status, revealing that both sides of the Euphrates River in the east and their extensional areas are most significantly affected by human activities. This study discovered the negative impacts of the war on vegetation growth and can be utilized as a reference for the research and strategy formulation on food security in areas with military conflicts.

Key wordsNDVI    time series    vegetation    Syrian Civil War
收稿日期: 2021-07-28      出版日期: 2022-09-21
ZTFLH:  TP79  
基金资助:国家重点研发计划项目“城乡生态资源高分遥感与地面协同监测信息服务应用示范”(2017YFB0503905-05);国家自然科学基金项目“高空间分辨率城市地表温度遥感反演方法研究”(41771369);及国家对地观测科学数据中心开放基金项目“基于高分五号热红外数据的高空间分辨率地表温度产品集生成”(NODAOP2020001)
通讯作者: 任华忠
作者简介: 曾 晖(1990-),男,硕士研究生,研究方向为热红外遥感应用与研究。Email: zenghui@pku.edu.cn
引用本文:   
曾晖, 任华忠, 朱金顺, 郭金鑫, 叶昕, 滕沅建, 聂婧, 秦其明. 叙利亚战争对植被的影响[J]. 自然资源遥感, 2022, 34(3): 121-128.
ZENG Hui, REN Huazhong, ZHU Jinshun, GUO Jinxin, YE Xin, TENG Yuanjian, NIE Jing, QIN Qiming. Impacts of the Syrian Civil War on vegetation. Remote Sensing for Natural Resources, 2022, 34(3): 121-128.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2021233      或      https://www.gtzyyg.com/CN/Y2022/V34/I3/121
Fig.1  2001年研究区地表分类示意图
Fig.2  AG算法重建后动态阈值法提取叙利亚作物区物候年际变化
β Z NDVI变化趋势
>0 ≥1.96 显著增长
>0 (-1.96,1.96) 轻微增长
0 (-1.96,1.96) 稳定或无植被区域
<0 (-1.96,1.96) 轻微退化
<0 ≤-1.96 显著退化
Tab.1  NDVI变化趋势的变化程度划分
β Z H NDVI变化趋势 β Z H NDVI变化趋势
>0 ≥1.96 >0.5 一致且显著增长 <0 (-1.96,1.96) <0.5 从增长到退化
>0 (-1.96,1.96) >0.5 一致且轻微增长 <0 (-1.96,1.96) >0.5 一致且轻微退化
>0 (-1.96,1.96) <0.5 从退化到增长 <0 ≤-1.96 >0.5 一致且显著退化
0 (-1.96,1.96) 0.5 稳定无变化
Tab.2  NDVI变化趋势的变化程度划分
Fig.3  研究期趋势分析结果示意图
Fig.4  叙利亚多种地表类型生长季内NDVI变化趋势(2001—2018)
像素数 荒原 作物 灌木 草地 2018年
合计
荒原 98 531 504 6 349 1 535 107 036
作物 21 32 865 543 582 34 406
灌木 639 8 621 18 674 1 927 29 869
草地 403 1 423 1 198 4 625 7 938
2001年
合计
99 596 44 035 26 785 8 828
总变化数 7 440 -9 629 3 084 -890
变化率/% 7.47 -21.87 11.51 -10.08
Tab.3  叙利亚土地覆盖转移矩阵
Fig.5  荒原和作物地类像素变化(2001—2018)
Fig.6  未来变化趋势分析结果示意图
Fig.7  叙利亚地区生长季降雨量数据和残差分析结果示意图
[1] 孙红雨, 王长耀. 中国地表植被覆盖变化及其与气候因子关系──基于NOAA时间序列数据分析[J]. 遥感学报, 1998, 2(3):204-210.
Sun H Y, Wang C Y. Analysis of the vegetation cover change and the relationship between NDVI and environmental factors by using NOAA time series data[J]. Journal of Remote Sensing, 1998, 2(3):204-210.
[2] Rouse J W, Haas R H, Schell J A, et al. Monitoring vegetation systems in the Great Plains with ERTS[J]. NASA Special Publication, 1974, 351(1974):309.
[3] 田庆久, 闵祥军. 植被指数研究进展[J]. 地球科学进展, 1998, 13(4):327-333.
Tian Q J, Min X J. Advances in study on vegetation indices[J]. Advance in Earth Sciences, 1998, 13(4):327-333.
[4] Li X, Li D. Can night-time light images play a role in evaluating the Syrian crisis?[J]. International Journal of Remote Sensing, 2014, 35(18):6648-6661.
doi: 10.1080/01431161.2014.971469
[5] Li X, Chen F, Chen X. Satellite-observed nighttime light variation as evidence for global armed conflicts[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(5):2302-2315.
doi: 10.1109/JSTARS.2013.2241021
[6] Huete A, Didan K, van Leeuwen W.MODIS vegetation indices[M]// Land remote sensing and global environmental change. New York: Springer, 2010:579-602.
[7] Beck H E, McVicar T R, van Dijk A I J M. Global evaluation of four AVHRR-NDVI data sets:Intercomparison and assessment against Landsat imagery[J]. Remote Sensing of Environment, 2011, 115(10):2547-2563.
doi: 10.1016/j.rse.2011.05.012
[8] Huete A, Justice C, Van Leeuwen W.MODIS vegetation index(MOD13)[J]. Algorithm Theoretical Basis Document, 1999, 3(213):295-309.
[9] Harris I, Jones P D, Osborn T J. Updated high-resolution grids of monthly climatic observations:The CRU TS3.10 Dataset[J]. International Journal of Climatology, 2014, 34(3):623-642.
doi: 10.1002/joc.3711
[10] Fick S E, Hijmans R J. WorldClim 2:New 1-km spatial resolution climate surfaces for global land areas[J]. International Journal of Climatology, 2017, 37(12):4302-4315.
doi: 10.1002/joc.5086
[11] 柯灵红, 王正兴, 宋春桥. 青藏高原东北部 MODIS LST 时间序列重建及与台站地温比较[J]. 地理科学进展, 2011, 30(7):819-826.
Ke L H, Wang Z X, Song C Q. Reconstruction of MODIS LST time series and comparison with land surface temperature among observation stations in the northeast Qinghai-Tibet Plateau[J]. Progress in Geography, 2011, 30(7):819-826.
[12] 曹云锋, 王正兴, 邓芳萍. 3种滤波算法对 NDVI 高质量数据保真性研究[J]. 遥感技术与应用, 2010, 25(1):118-125.
Cao Y F, Wang Z X, Deng F P. Fidelity performance of three filters for high quality NDVI Time-series analysis[J]. Remote Sensing Technology and Application, 2010, 25(1):118-125.
[13] Jönsson P, Eklundh L. TIMESAT:A program for analyzing time-series of satellite sensor data[J]. Computers and Geosciences, 2004, 30(8):833-845.
doi: 10.1016/j.cageo.2004.05.006
[14] Jonsson P, Eklundh L. Seasonality extraction by function fitting to time-series of satellite sensor data[J]. IEEE Transactions on Geo-science and Remote Sensing, 2002, 40(8):1824-1832.
doi: 10.1109/TGRS.2002.802519
[15] Eklundh L, Jönsson P. TIMESAT 3.3 with seasonal trend decomposition and parallel processing software manual[R]. Sweden: Lund and Malmö University, 2017.
[16] 宋春桥, 柯灵红, 游松财. 基于 TIMESAT 的 3 种时序 NDVI 拟合方法比较研究[J]. 遥感技术与应用, 2011, 26(2):147-154.
Song C Q, Ke L H, You S C. Comparison of three NDVI time-series fitting methods based on TIMESAT:Taking the grassland in Northern Tibet as case[J]. Remote Sensing Technology and Application, 2011, 26(2):147-154.
[17] Mann H B. Nonparametric tests against trend[J]. Econometrica:Journal of the Econometric Society, 1945:245-259.
[18] Sen P K. Estimates of the regression coefficient based on Kendall’s tau[J]. Journal of the American Statistical Association, 1968, 63(324):1379-1389.
doi: 10.1080/01621459.1968.10480934
[19] Gilbert R O. Statistical methods for environmental pollution monitoring[M]. New York: John Wiley and Sons, 1987.
[20] 王佃来, 刘文萍, 黄心渊. 基于 Sen+ Mann-Kendall 的北京植被变化趋势分析[J]. 计算机工程与应用, 2013, 49(5):13-17.
Wang D L, Liu W P, Huang X Y. Trend analysis in vegetation cover in Beijing based on Sen+ Mann-Kendall method[J]. Computer Engineering and Applications, 2013, 49(5):13-17.
[21] Hurst H E. Long-term storage capacity of reservoirs[J]. Transactions of the American Society of Civil Engineers, 1951, 116(1):770-799.
doi: 10.1061/TACEAT.0006518
[22] Mandelbrot B B, Wallis J R. Robustness of the rescaled range R/S in the measurement of noncyclic long run statistical dependence[J]. Water Resources Research, 1969, 5(5):967-988.
doi: 10.1029/WR005i005p00967
[23] Evans J, Geerken R. Discrimination between climate and human-induced dryland degradation[J]. Journal of Arid Environments, 2004, 57(4):535-554.
doi: 10.1016/S0140-1963(03)00121-6
[24] Wessels K J, van den Bergh F, Scholes R J. Limits to detectability of land degradation by trend analysis of vegetation index data[J]. Remote Sensing of Environment, 2012, 125:10-22.
doi: 10.1016/j.rse.2012.06.022
[25] Abdo H G. Impacts of war in Syria on vegetation dynamics and erosion risks in Safita area,Tartous,Syria[J]. Regional Environmental Change, 2018, 18(6):1707-1719.
doi: 10.1007/s10113-018-1280-3
[26] Jaafar H H, Zurayk R, King C. Impact of the Syrian conflict on irrigated agriculture in the Orontes basin[J]. International Journal of Water Resources Development, 2015, 31(3):436-449.
doi: 10.1080/07900627.2015.1023892
[27] Wessels K J, Prince S D, Malherbe J. Can human-induced land degradation be distinguished from the effects of rainfall variability? A case study in South Africa[J]. Journal of Arid Environments, 2007, 68(2):271-297.
doi: 10.1016/j.jaridenv.2006.05.015
[28] Kelley C P, Mohtadi S, Cane M A. Climate change in the Fertile Crescent and implications of the recent Syrian drought[J]. Proceedings of the National Academy of Sciences, 2015, 112(11):3241-3246.
doi: 10.1073/pnas.1421533112
[1] 王叶兰, 杨鑫, 郝利娜. 2001—2021年川西高原植被NDVI时空变化及影响因素分析[J]. 自然资源遥感, 2023, 35(3): 212-220.
[2] 方贺, 张育慧, 何月, 李正泉, 樊高峰, 徐栋, 张春阳, 贺忠华. 浙江省植被生态质量时空变化及其驱动因素分析[J]. 自然资源遥感, 2023, 35(2): 245-254.
[3] 庞鑫, 刘珺. 气候变化对亚洲地区植被NDVI变化的影响[J]. 自然资源遥感, 2023, 35(2): 295-305.
[4] 秦乐, 何鹏, 马玉忠, 刘建强, 杨彬. 基于时空谱特征的遥感影像时间序列变化检测[J]. 自然资源遥感, 2022, 34(4): 105-112.
[5] 张思源, 岳楚, 袁国礼, 袁帅, 庞文强, 李俊. 基于ENDVI-SI3特征空间的盐渍化反演模型及风险评估[J]. 自然资源遥感, 2022, 34(4): 136-143.
[6] 王雅婷, 朱长明, 张涛, 张新, 石智宇. 2002—2020年秦岭—黄淮平原交界带植被物候特征遥感监测分析[J]. 自然资源遥感, 2022, 34(4): 225-234.
[7] 陈艳英, 马鑫程, 徐彦平, 王颖, 汪艳波. 地形及NDVI在林火遥感监测二次识别中应用的方法探讨[J]. 自然资源遥感, 2022, 34(3): 88-96.
[8] 朱思佳, 冯徽徽, 邹滨, 叶书朝. 2000—2019年洞庭湖流域植被NPP时空特征及驱动因素分析[J]. 自然资源遥感, 2022, 34(3): 196-206.
[9] 黄佩, 普军伟, 赵巧巧, 李忠杰, 宋浩昆, 赵筱青. 植被遥感信息提取方法研究进展及发展趋势[J]. 自然资源遥感, 2022, 34(2): 10-19.
[10] 骆泓鉴, 明冬萍, 徐录. 基于GEE的遥感生态指数时序计算[J]. 自然资源遥感, 2022, 34(2): 271-277.
[11] 王界, 王光辉, 刘宇, 齐建伟, 张涛. 基于PROSPECT-VISIR模型构建新植被水分指数[J]. 自然资源遥感, 2022, 34(2): 56-62.
[12] 潘建平, 徐永杰, 李明明, 胡勇, 王春晓. 结合相关系数和特征分析的植被区域自动变化检测研发[J]. 自然资源遥感, 2022, 34(1): 67-75.
[13] 李伟光, 侯美亭. 植被遥感时间序列数据重建方法简述及示例分析[J]. 自然资源遥感, 2022, 34(1): 1-9.
[14] 史飞飞, 高小红, 肖建设, 李宏达, 李润祥, 张昊. 基于集成学习和多时相遥感影像的枸杞种植区分类[J]. 自然资源遥感, 2022, 34(1): 115-126.
[15] 宋奇, 冯春晖, 马自强, 王楠, 纪文君, 彭杰. 基于1990—2019年Landsat影像的干旱区绿洲土地利用变化与模拟[J]. 自然资源遥感, 2022, 34(1): 198-209.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发