Please wait a minute...
 
自然资源遥感  2022, Vol. 34 Issue (1): 1-9    DOI: 10.6046/zrzyyg.2021071
     综述 本期目录 | 过刊浏览 | 高级检索 |
植被遥感时间序列数据重建方法简述及示例分析
李伟光1,2(), 侯美亭3()
1.海南省气候中心,海口 570203
2.海南省南海气象防灾减灾重点实验室, 海口 570203
3.中国气象局气象干部培训学院,北京 100081
A review of reconstruction methods for remote-sensing-based time series data of vegetation and some examples
LI Weiguang1,2(), HOU Meiting3()
1. Hainan Meteorological Service, Haikou 570203, China
2. Key Laboratory of South China Sea Meteorological Disaster Prevention and Mitigation of Hainan Province, Haikou 570203,China
3. China Meteorological Administration Training Centre, Beijing 100081, China
全文: PDF(3718 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

随着遥感数据的不断积累,植被遥感产品逐渐形成了完善的时间序列数据,这些数据对阐明生态系统动态变化及分析有关的驱动因素具有重要价值。然而,云遮挡、仪器误差等因素严重制约着植被遥感产品的观测质量,往往造成连续观测数据的缺失。对存在数据缺失的序列进行时空重建是准确提取序列变化特征的重要前提,时空重建就是充分利用遥感数据的时空相关性对数据缺失进行插值以及平滑滤波,以重建完整时间序列。本研究主要以植被遥感时间序列数据为例,对以往常用的时间序列重建方法进行了简要回顾,时间序列重建大致包括插值、平滑2大步骤,插值又分为基于时间的、基于空间的、时空相结合的插值3大类型。然后,以模拟的归一化植被指数(normalized difference vegetation index,NDVI)时间序列、GIMMS NDVI真实时间序列为例,并随机制造不同比例的数据缺失,对比了线性插值、奇异谱分析、Whittaker和时间序列谐波分析等4种常用的不同类型的数据重建方法的时间序列重建效果。结果显示,4种方法的表现各有优劣,但Whittaker方法显示了整体更好的性能。由于随区域的不同,插值方法的表现可能有所差异,故不同数据重建方法还有待进一步推广验证。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李伟光
侯美亭
关键词 植被遥感时间序列数据重建插值平滑    
Abstract

Remote-sensing-based time series data of vegetation have been increasingly available with the accumulation of remote sensing data. These data are vital for ascertaining the changes in an ecosystem and analyzing relevant driving factors. However, some factors (e.g., cloud cover and instrument errors) restrict the observation quality of the vegetation products of remote sensing, creating data gaps in continuous and high-quality observation data. The data gaps can be filled based on the spatio-temporal dependence of the earth’s surface characteristics, which is called the spatio-temporal reconstruction of time series data. High-quality spatio-temporal reconstruction of time series data is an important prerequisite for the accurate extraction of changes in time series data. Taking the remote-sensing-based time series data of vegetation indices as examples, this study briefly reviewed the widely used reconstruction methods of time series data firstly. These methods generally include two steps: interpolation and smoothing. The interpolation can be divided into three major types, namely time-based, space-based, and spatio-temporal interpolation. Then, taking the simulated normalized vegetation index (NDVI) time series and actual GIMMS NDVI time series as examples, different proportions of data gaps in the two time series were created. Then, this study compared the effects of four types of data reconstruction methods (i.e., linear interpolation, singular spectrum analysis (SSA), Whittaker, and time series harmonic analysis (HANTS)) on the reconstruction results of the two time series. The results show that the four methods have their own advantages and disadvantages, and the Whittaker method showed relatively good performance overall. However, the performance of interpolation methods might vary within different regions, and thereby the data reconstruction methods need to be further verified.

Key wordsremote sensing of vegetation    time series    data reconstruction    interpolation    smoothing
收稿日期: 2021-03-15      出版日期: 2022-03-14
ZTFLH:  TP79  
基金资助:国家重点研发计划政府间国际科技创新合作重点专项“气候变化对生态系统斑图演化的影响研究”编号(2018YFE0109600);中国气象局创新发展专项“多光谱无人机遥感在热带果树气象灾害监测评估中的应用研究”编号(CXFZ2021J070);中国气象局气象干部培训学院科研项目“卫星遥感生态变化监测新技术培训课程设计”共同资助编号(内2020-010)
通讯作者: 侯美亭
作者简介: 李伟光(1981-),男,高级工程师,主要研究方向为遥感在气象灾害监测中的应用。Email: 163great@163.com
引用本文:   
李伟光, 侯美亭. 植被遥感时间序列数据重建方法简述及示例分析[J]. 自然资源遥感, 2022, 34(1): 1-9.
LI Weiguang, HOU Meiting. A review of reconstruction methods for remote-sensing-based time series data of vegetation and some examples. Remote Sensing for Natural Resources, 2022, 34(1): 1-9.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2021071      或      https://www.gtzyyg.com/CN/Y2022/V34/I1/1
Fig.1  模拟NDVI序列数据重建效果对比
RMSEall RMSEgap
数据缺失比例
/%
线性插值 SSA Whittaker HANTS 线性插值 SSA Whittaker HANTS
10 <0.000 1 0.096 6 <0.000 1 0.045 6 0.012 6 0.105 4 0.000 8 0.061 2
20 <0.000 1 0.004 8 <0.000 1 0.045 4 0.014 7 0.004 0 0.000 8 0.067 7
30 <0.000 1 0.077 5 <0.000 1 0.043 6 0.015 0 0.085 3 0.001 0 0.073 1
40 <0.000 1 0.102 3 <0.000 1 0.023 8 0.024 1 0.110 0 0.002 4 0.049 2
Tab.1  基于模拟NDVI序列的不同数据重建方法的RMSE对比
Fig.2  NDVI序列不同数据重建方法效果对比
Fig.3  NDVI序列数据重建方法效果局部放大对比
RMSEall RMSEgap
数据缺失比例
/%
线性插值 SSA Whittaker HANTS 线性插值 SSA Whittaker HANTS
10 <0.000 1 0.034 1 0.007 8 0.044 4 0.048 2 0.052 3 0.044 0 0.055 5
20 <0.000 1 0.035 8 0.026 1 0.042 3 0.056 5 0.043 0 0.056 6 0.061 9
30 <0.000 1 0.034 0 0.000 9 0.042 3 0.058 4 0.046 1 0.060 4 0.057 3
40 <0.000 1 0.031 2 <0.000 1 0.040 4 0.061 0 0.045 3 0.066 0 0.061 2
Tab.2  基于GIMMS NDVI时间序列的不同数据重建方法的RMSE
[1] Roughgarden J, Running S W, Matson P A. What does remote sensing do for Ecology?[J]. Ecology, 1991, 72(6):1918-1922.
doi: 10.2307/1941546
[2] Goward S N, Tucker C J, Dye D G. North American vegetation patterns observed with the NOAA-7 advanced very high resolution radiometer[J]. Vegetatio, 1985, 64(1):3-14.
doi: 10.1007/BF00033449
[3] Sun Y, Frankenberg C, Jung M, et al. Overview of solar-induced chlorophyll fluorescence (SIF) from the orbiting carbon observatory-2:Retrieval,cross-mission comparison,and global monitoring for GPP[J]. Remote Sensing of Environment, 2018, 209:808-823.
doi: 10.1016/j.rse.2018.02.016
[4] Skidmore A K, Pettorelli N, Coops N C, et al. Agree on biodiversity metrics to track from space[J]. Nature, 2015, 523(7561):403-405.
doi: 10.1038/523403a
[5] Ben Abbes A, Bounouh O, Farah IR, et al. Comparative study of three satellite image time-series decomposition methods for vegetation change detection[J]. European Journal of Remote Sensing, 2018, 51(1):607-615.
doi: 10.1080/22797254.2018.1465360
[6] 吕妍, 张黎, 闫慧敏, 等. 中国西南喀斯特地区植被变化时空特征及其成因[J]. 生态学报, 2018, 38(24):8774-8786.
Lyu Y, Zhang L, Yan H M, et al. Spatial and temporal patterns of changing vegetation and the influence of environmental factors in the Karst region of Southwest China[J]. Acta Ecologica Sinica, 2018, 38(24):8774-8786.
[7] Cord A F, Brauman K A, Chaplin-Kramer R, et al. Priorities to advance monitoring of ecosystem services using earth observation[J]. Trends in Ecology and Evolution, 2017, 32(6):416-428.
doi: 10.1016/j.tree.2017.03.003
[8] Wylie B K, Johnson D A, Laca E, et al. Calibration of remotely sensed,coarse resolution NDVI to CO2 fluxes in a sagebrush-steppe ecosystem[J]. Remote Sensing of Environment, 2003, 85(2):243-255.
doi: 10.1016/S0034-4257(03)00004-X
[9] Ustin S L, Gamon J A. Remote sensing of plant functional types[J]. New Phytologist, 2010, 186(4):795-816.
doi: 10.1111/nph.2010.186.issue-4
[10] Hilker T, Natsagdorj E, Waring R H, et al. Satellite observed widespread decline in Mongolian grasslands largely due to overgrazing[J]. Global Change Biology, 2014, 20(2):418-428.
doi: 10.1111/gcb.2014.20.issue-2
[11] Jönsson P, Eklundh L. TIMESAT:A program for analyzing time-series of satellite sensor data[J]. Computers and Geosciences, 2004, 30(8):833-845.
doi: 10.1016/j.cageo.2004.05.006
[12] Verbesselt J, Hyndman R, Newnham G, et al. Detecting trend and seasonal changes in satellite image time series[J]. Remote Sensing of Environment, 2010, 114(1):106-115.
doi: 10.1016/j.rse.2009.08.014
[13] Udelhoven T. TimeStats:A software tool for the retrieval of temporal patterns from global satellite archives[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2011, 4(2):310-317.
doi: 10.1109/JSTARS.4609443
[14] Eerens H, Haesen D, Rembold F, et al. Image time series processing for agriculture monitoring[J]. Environmental Modelling and Software, 2014, 53:154-162.
doi: 10.1016/j.envsoft.2013.10.021
[15] Jamali S, Jönsson P, Eklundh L, et al. Detecting changes in vegetation trends using time series segmentation[J]. Remote Sensing of Environment, 2015, 156:182-195.
doi: 10.1016/j.rse.2014.09.010
[16] Hufkens K, Basler D, Milliman T, et al. An integrated phenology modelling framework in R[J]. Methods in Ecology and Evolution, 2018, 9(5):1276-1285.
doi: 10.1111/mee3.2018.9.issue-5
[17] Frantz D. FORCE-Landsat + Sentinel-2 analysis ready data and beyond[J]. Remote Sensing, 2019, 11(9):1124.
doi: 10.3390/rs11091124
[18] Zhao K, Wulder M A, Hu T, et al. Detecting change-point,trend,and seasonality in satellite time series data to track abrupt changes and nonlinear dynamics:A Bayesian ensemble algorithm[J]. Remote Sensing of Environment, 2019, 232:111181.
doi: 10.1016/j.rse.2019.04.034
[19] Belda S, Pipia L, Morcillo-Pallarés P, et al. DATimeS:A machine learning time series GUI toolbox for gap-filling and vegetation phenology trends detection[J]. Environmental Modelling and Software, 2020, 127:104666.
doi: 10.1016/j.envsoft.2020.104666
[20] Hird J N, McDermid G J. Noise reduction of NDVI time series:An empirical comparison of selected techniques[J]. Remote Sensing of Environment, 2009, 113(1):248-258.
doi: 10.1016/j.rse.2008.09.003
[21] Cai Z, Jönsson P, Jin H, et al. Performance of smoothing methods for reconstructing NDVI time-series and estimating vegetation phenology from MODIS data[J]. Remote Sensing, 2017, 9(12):1271.
doi: 10.3390/rs9121271
[22] Geng L, Ma M, Wang X, et al. Comparison of eight techniques for reconstructing multi-satellite sensor time-series NDVI data sets in the Heihe River basin,China[J]. Remote Sensing, 2014, 6(3):2024-2049.
doi: 10.3390/rs6032024
[23] Liu R, Shang R, Liu Y, et al. Global evaluation of gap-filling approaches for seasonal NDVI with considering vegetation growth trajectory,protection of key point,noise resistance and curve stability[J]. Remote Sensing of Environment, 2017, 189:164-179.
doi: 10.1016/j.rse.2016.11.023
[24] 耿丽英, 马明国. 长时间序列NDVI数据重建方法比较研究进展[J]. 遥感技术与应用, 2014, 29(2):362-368.
Geng L Y, Ma M G. Advance in method comparison of reconstructing remote sensing time series data sets[J]. Remote Sensing Technology and Application, 2014, 29(2):362-368.
[25] 李儒, 张霞, 刘波, 等. 遥感时间序列数据滤波重建算法发展综述[J]. 遥感学报, 2009, 13(2):335-341.
Li R, Zhang X, Liu B, et al. Review on methods of remote sensing time-series data reconstruction[J]. Journal of Remote Sensing, 2009, 13(2):335-341.
[26] Zhang Y, Song C, Band L E, et al. Reanalysis of global terrestrial vegetation trends from MODIS products:Browning or greening?[J]. Remote Sensing of Environment, 2017, 191:145-155.
doi: 10.1016/j.rse.2016.12.018
[27] Mondal S, Jeganathan C. Mountain agriculture extraction from time-series MODIS NDVI using dynamic time warping technique[J]. International Journal of Remote Sensing, 2018, 39(11):3679-3704.
doi: 10.1080/01431161.2018.1444289
[28] Joiner J, Yoshida Y, Anderson M, et al. Global relationships among traditional reflectance vegetation indices (NDVI and NDII),evapo-transpiration (ET),and soil moisture variability on weekly timescales[J]. Remote Sensing of Environment, 2018, 219:339-352.
doi: 10.1016/j.rse.2018.10.020
[29] Jeganathan C, Dash J, Atkinson P M. Remotely sensed trends in the phenology of northern high latitude terrestrial vegetation,controlling for land cover change and vegetation type[J]. Remote Sensing of Environment, 2014, 143:154-170.
doi: 10.1016/j.rse.2013.11.020
[30] Nestola E, Calfapietra C, Emmerton C A, et al. Monitoring grassland seasonal carbon dynamics,by integrating MODIS NDVI,proximal optical sampling,and eddy covariance measurements[J]. Remote Sensing, 2016, 8(3):260.
doi: 10.3390/rs8030260
[31] Eilers P H C. A perfect smoother[J]. Analytical Chemistry, 2003, 75(14):3631-3636.
pmid: 14570219
[32] Julien Y, Sobrino J A. Comparison of cloud-reconstruction metho-ds for time series of composite NDVI data[J]. Remote Sensing of Environment, 2010, 114(3):618-625.
doi: 10.1016/j.rse.2009.11.001
[33] Shen M, Zhang G, Cong N, et al. Increasing altitudinal gradient of spring vegetation phenology during the last decade on the Qinghai-Tibetan Plateau[J]. Agricultural and Forest Meteorology, 2014, 189-190:71-80.
doi: 10.1016/j.agrformet.2014.01.003
[34] Zhang X. Reconstruction of a complete global time series of daily vegetation index trajectory from long-term AVHRR data[J]. Remote Sensing of Environment, 2015, 156:457-472.
doi: 10.1016/j.rse.2014.10.012
[35] Ganguly S, Friedl M A, Tan B, et al. Land surface phenology from MODIS:Characterization of the Collection 5 global land cover dynamics product[J]. Remote Sensing of Environment, 2010, 114(8):1805-1816.
doi: 10.1016/j.rse.2010.04.005
[36] Kandasamy S, Baret F, Verger A, et al. A comparison of methods for smoothing and gap filling time series of remote sensing observations:Application to MODIS LAI products[J]. Biogeosciences, 2013, 10(6):4055-4071.
doi: 10.5194/bg-10-4055-2013
[37] Liang S, Ma W, Sui X, et al. Extracting the spatiotemporal pattern of cropping systems from NDVI time series using a combination of the spline and HANTS algorithms:A case study for Shandong Province[J]. Canadian Journal of Remote Sensing, 2017, 43(1):1-15.
doi: 10.1080/07038992.2017.1252906
[38] Pede T, Mountrakis G. An empirical comparison of interpolation methods for MODIS 8-day land surface temperature composites across the conterminous Unites States[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 142:137-150.
doi: 10.1016/j.isprsjprs.2018.06.003
[39] Hmimina G, Dufrêne E, Pontailler J Y, et al. Evaluation of the potential of MODIS satellite data to predict vegetation phenology in different biomes:An investigation using ground-based NDVI measurements[J]. Remote Sensing of Environment, 2013, 132:145-158.
doi: 10.1016/j.rse.2013.01.010
[40] Zhou J, Jia L, Menenti M. Reconstruction of global MODIS NDVI time series:Performance of harmonic analysis of time series (HANTS)[J]. Remote Sensing of Environment, 2015, 163:217-228.
doi: 10.1016/j.rse.2015.03.018
[41] Julien Y, Sobrino J A. Optimizing and comparing gap-filling techniques using simulated NDVI time series from remotely sensed global data[J]. International Journal of Applied Earth Observation and Geoinformation, 2019, 76:93-111.
doi: 10.1016/j.jag.2018.11.008
[42] Ghafarian Malamiri H R, Zare H, et al. Comparison of harmonic analysis of time series (HANTS) and multi-singular spectrum analysis (M-SSA) in reconstruction of long-gap missing data in NDVI time series[J]. Remote Sensing, 2020, 12(17):2747.
doi: 10.3390/rs12172747
[43] Kondrashov D, Ghil M. Spatio-temporal filling of missing points in geophysical data sets[J]. Nonlin Processes Geophys, 2006, 13(2):151-159.
doi: 10.5194/npg-13-151-2006
[44] Zhao J, Lange H, Meissner H.Gap-filling continuously-measured soil respiration data:A highlight of time-series-based methods[J]. Agricultural and Forest Meteorology, 2020, 285-286:107912.
doi: 10.1016/j.agrformet.2020.107912
[45] Konik M, Kowalewski M, Bradtke K, et al. The operational method of filling information gaps in satellite imagery using numerical models[J]. International Journal of Applied Earth Observation and Geoinformation, 2019, 75:68-82.
doi: 10.1016/j.jag.2018.09.002
[46] Miles V V, Esau I. Spatial heterogeneity of greening and browning between and within bioclimatic zones in northern west Siberia[J]. Environmental Research Letters, 2016, 11(11):115002.
doi: 10.1088/1748-9326/11/11/115002
[47] Borak J S, Jasinski M F. Effective interpolation of incomplete satellite-derived leaf-area index time series for the continental United States[J]. Agricultural and Forest Meteorology, 2009, 149(2):320-332.
doi: 10.1016/j.agrformet.2008.08.017
[48] Militino A F, Ugarte M D, Pérez-Goya U, et al. Interpolation of the mean anomalies for cloud filling in land surface temperature and normalized difference vegetation index[C]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(8):6068-6078.
[49] Cao R, Chen Y, Shen M, et al. A simple method to improve the quality of NDVI time-series data by integrating spatiotemporal information with the Savitzky-Golay filter[J]. Remote Sensing of Environment, 2018, 217:244-257.
doi: 10.1016/j.rse.2018.08.022
[50] Yan L, Roy D P. Spatially and temporally complete Landsat reflectance time series modelling:The fill-and-fit approach[J]. Remote Sensing of Environment, 2020, 241:111718.
doi: 10.1016/j.rse.2020.111718
[51] Fang X, Zhu Q, Ren L, et al. Large-scale detection of vegetation dynamics and their potential drivers using MODIS images and BFAST:A case study in Quebec,Canada[J]. Remote Sensing of Environment, 2018, 206:391-402.
doi: 10.1016/j.rse.2017.11.017
[52] Burrell A L, Evans J P, Liu Y. The impact of dataset selection on land degradation assessment[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 146:22-37.
doi: 10.1016/j.isprsjprs.2018.08.017
[53] Pastor-Guzman J, Dash J, Atkinson P M. Remote sensing of mangrove forest phenology and its environmental drivers[J]. Remote Sensing of Environment, 2018, 205:71-84.
doi: 10.1016/j.rse.2017.11.009
[54] Doktor D, Bondeau A, Koslowski D, et al. Influence of heterogeneous landscapes on computed green-up dates based on daily AVHRR NDVI observations[J]. Remote Sensing of Environment, 2009, 113(12):2618-2632.
doi: 10.1016/j.rse.2009.07.020
[55] Holben B N. Characteristics of maximum-value composite images from temporal AVHRR data[J]. International Journal of Remote Sensing, 1986, 7(11):1417-1434.
doi: 10.1080/01431168608948945
[56] Zeng L, Wardlow B D, Xiang D, et al. A review of vegetation phenological metrics extraction using time-series,multispectral satellite data[J]. Remote Sensing of Environment, 2020, 237:111511.
doi: 10.1016/j.rse.2019.111511
[57] Eklundh L, Jönsson P. TIMESAT:A software package for time-series processing and assessment of vegetation dynamics[M]//Kuenzer C, Dech S,Wagner W.Remote sensing time series:Revealing land surface dynamics. Springer International Publishing, 2015:141-158.
[58] Jönsson P, Cai Z, Melaas E, et al. A method for robust estimation of vegetation seasonality from Landsat and Sentinel-2 time series data[J]. Remote Sensing, 2018, 10(4):635.
doi: 10.3390/rs10040635
[59] Chen J, Jönsson P, Tamura M, et al. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter[J]. Remote Sensing of Environment, 2004, 91(3):332-344.
doi: 10.1016/j.rse.2004.03.014
[60] Atzberger C, Eilers P H C. A time series for monitoring vegetation activity and phenology at 10-daily time steps covering large parts of South America[J]. International Journal of Digital Earth, 2011, 4(5):365-386.
doi: 10.1080/17538947.2010.505664
[61] Melaas E K, Friedl M A, Zhu Z. Detecting interannual variation in deciduous broadleaf forest phenology using Landsat TM/ETM+ data[J]. Remote Sensing of Environment, 2013, 132:176-185.
doi: 10.1016/j.rse.2013.01.011
[62] Padhee S K, Dutta S. Spatio-temporal reconstruction of MODIS NDVI by regional land surface phenology and harmonic analysis of time-series[J]. GIScience and Remote Sensing, 2019, 56(8):1261-1288.
doi: 10.1080/15481603.2019.1646977
[63] Fang H, Baret F, Plummer S, et al. An overview of global leaf area index (LAI):Methods,products,validation,and applications[J]. Reviews of Geophysics, 2019, 57(3):739-799.
doi: 10.1029/2018RG000608
[64] Verbesselt J, Hyndman R, Zeileis A, et al. Phenological change detection while accounting for abrupt and gradual trends in satellite image time series[J]. Remote Sensing of Environment, 2010, 114(12):2970-2980.
doi: 10.1016/j.rse.2010.08.003
[1] 秦乐, 何鹏, 马玉忠, 刘建强, 杨彬. 基于时空谱特征的遥感影像时间序列变化检测[J]. 自然资源遥感, 2022, 34(4): 105-112.
[2] 毛克彪, 严毅博, 曹萌萌, 袁紫晋, 覃志豪. 北美洲地表温度数据重建及时空变化分析[J]. 自然资源遥感, 2022, 34(4): 203-215.
[3] 曾晖, 任华忠, 朱金顺, 郭金鑫, 叶昕, 滕沅建, 聂婧, 秦其明. 叙利亚战争对植被的影响[J]. 自然资源遥感, 2022, 34(3): 121-128.
[4] 骆泓鉴, 明冬萍, 徐录. 基于GEE的遥感生态指数时序计算[J]. 自然资源遥感, 2022, 34(2): 271-277.
[5] 黄佩, 普军伟, 赵巧巧, 李忠杰, 宋浩昆, 赵筱青. 植被遥感信息提取方法研究进展及发展趋势[J]. 自然资源遥感, 2022, 34(2): 10-19.
[6] 宋奇, 冯春晖, 马自强, 王楠, 纪文君, 彭杰. 基于1990—2019年Landsat影像的干旱区绿洲土地利用变化与模拟[J]. 自然资源遥感, 2022, 34(1): 198-209.
[7] 钞振华, 车明亮, 侯胜芳. 基于时间序列遥感数据植被物候信息提取软件发展现状[J]. 自然资源遥感, 2021, 33(4): 19-25.
[8] 赖佩玉, 黄静, 韩旭军, 马明国. 基于GEE的三峡蓄水对重庆地表水和植被影响研究[J]. 自然资源遥感, 2021, 33(4): 227-234.
[9] 周芳成, 唐世浩, 韩秀珍, 宋小宁, 曹广真. 云下遥感地表温度重构方法研究[J]. 国土资源遥感, 2021, 33(1): 78-85.
[10] 王德军, 姜琦刚, 李远华, 关海涛, 赵鹏飞, 习靖. 基于Sentinel-2A/B时序数据与随机森林算法的农耕区土地利用分类[J]. 国土资源遥感, 2020, 32(4): 236-243.
[11] 孙超, 陈振杰, 王贝贝. 基于SAR时间序列的建设用地扩展监测——以常州市新北区为例[J]. 国土资源遥感, 2020, 32(4): 154-162.
[12] 王碧晴, 韩文泉, 许驰. 基于图像分割和NDVI时间序列曲线分类模型的冬小麦种植区域识别与提取[J]. 国土资源遥感, 2020, 32(2): 219-225.
[13] 杨玉婷, 陈海兰, 左家旗. 1990—2017年间杭州市不透水面比例遥感监测[J]. 国土资源遥感, 2020, 32(2): 241-250.
[14] 朱爽, 张锦水. 时间序列低分影像修正中分遥感冬小麦分布[J]. 国土资源遥感, 2020, 32(1): 19-26.
[15] 左家旗, 王泽根, 边金虎, 李爱农, 雷光斌, 张正健. 地表不透水面比例遥感反演研究综述[J]. 国土资源遥感, 2019, 31(3): 20-28.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发