Please wait a minute...
 
自然资源遥感  2025, Vol. 37 Issue (5): 122-130    DOI: 10.6046/zrzyyg.2024209
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
面向高分辨率遥感影像建筑物提取的SD-BASNet网络
朱娟娟1,2(), 黄亮1,3(), 朱莎莎4
1.昆明理工大学国土资源工程学院,昆明 650093
2.云南省地矿测绘院有限公司,昆明 650218
3.云南省山地灾害天空地一体化智慧监测国际联合实验室,昆明 650093
4.中国地质调查局昆明自然资源综合调查中心,昆明 650100
SD-BASNet:a building extraction network for high-spatial-resolution remote sensing imagery
ZHU Juanjuan1,2(), HUANG Liang1,3(), ZHU Shasha4
1. Kunming University of Science and Technology,Faculty of Land Resource Engineering,Kunming 650093,China
2. Yunnan Institute of Surveying and Mapping of Geology and Mineral Resources Co.,Ltd.,Kunming 650218,China
3. Yunnan International Joint Laboratory for Integrated Sky-Ground Intelligent Monitoring of Mountain Hazards,Kunming 650093,China
4. Kunming General Survey of Natural Resources Center,China Geological Survey,Kunming 650100,China
全文: PDF(5680 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

针对网络模型参数量大、下采样过程丢失影像建筑物细节信息的问题,受轻量级网络的启发,设计了一种融入深度可分离残差块和空洞卷积的建筑物提取网络(SD-BASNet)。首先,在深度监督编码器预测模块中设计了一个深度可分离残差块,将深度可分离卷积引入主干网络ResNet中,避免卷积核过大,减少网络的参数量;其次,为防止网络轻量化带来的精度下降,将空洞卷积融入后处理优化模块的编码层,增大特征图的感受野,从而捕捉更广泛的上下文信息,提高建筑物特征提取的准确性。在WHU建筑物数据集上进行实验,在不同尺度建筑物提取中均表现较好,其平均交并比和平均像素精度分别为92.25%和96.59%,其召回率、精确率和F1指标分别达到96.50%,93.79%和92.61%。与PSPNet,SegNet,DeepLabV3,SE-UNet,UNet++等语义分割网络相比,SD-BASNet网络提取精度得到了显著提升,且提取的建筑物完整度更好;与基础网络BASNet相比,SD-BASNet网络的参数量与运行时间也有所减少,证实了该文提出的SD-BASNet网络的有效性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱娟娟
黄亮
朱莎莎
关键词 建筑物提取高分辨率遥感影像BASNet网络深度可分离残差块空洞卷积    
Abstract

In response to the challenges posed by substantial parameters and the loss of building details during downsampling,this study,inspired by lightweight networks,designed a building extraction network (SD-BASNet) incorporating depthwise separable residual blocks and dilated convolution. First,a depthwise separable residual block was designed in the prediction module of the deep supervision encoder-decoder. Depthwise separable convolution was incorporated into the backbone ResNet to prevent oversized convolutional kernels and reduce the number of network parameters. Second,to mitigate the potential decline in accuracy due to network lightweighting,dilated convolution was integrated into the encoder layer of the post-processing optimization module. This strategy effectively expands the receptive field of feature maps,thereby capturing broader contextual information and enhancing the accuracy of building feature extraction. Experiments on the WHU building dataset showed that the proposed network achieved an mIoU of 92.25%,an mPA of 96.59%,a Recall of 96.50%,a Precision of 93.79%,and a F1-score of 92.61%. Compared with current semantic segmentation networks,including PSPNet,SegNet,DeepLabV3,SE-UNet,and UNet++,the SD-BASNet demonstrated significantly improved accuracy and better completeness of building extraction. Compared with the baseline BASNet,the SD-BASNet also exhibited reductions in both parameter count and runtime,demonstrating its effectiveness.

Key wordsbuilding extraction    high-spatial-resolution remote sensing imagery    boundary-aware salient object detection (BASNet)    depthwise separable residual block    dilated convolution
收稿日期: 2024-06-12      出版日期: 2025-10-28
ZTFLH:  TP79  
基金资助:国家自然科学基金项目“面向光学与SAR遥感图像语义变化检测的多任务学习方法研究”(42361054);云南省基础研究计划项目“轻量级自适应尺度特征遥感影像非监督变化检测方法”(202201AT070164);湖南省自然科学基金项目“基于边缘注意力网络的建筑物动态变化检测和提取”(2023JJ60561);兴滇英才支持计划项目共同资助
通讯作者: 黄 亮(1985-),男,博士,副教授,主要研究方向为遥感影像变化检测。Email:kmhuangliang@163.com
作者简介: 朱娟娟(1996-),女,硕士,助理工程师,主要研究方向为遥感图像处理与分析。Email:20202201142@stu.kust.edu.cn
引用本文:   
朱娟娟, 黄亮, 朱莎莎. 面向高分辨率遥感影像建筑物提取的SD-BASNet网络[J]. 自然资源遥感, 2025, 37(5): 122-130.
ZHU Juanjuan, HUANG Liang, ZHU Shasha. SD-BASNet:a building extraction network for high-spatial-resolution remote sensing imagery. Remote Sensing for Natural Resources, 2025, 37(5): 122-130.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2024209      或      https://www.gtzyyg.com/CN/Y2025/V37/I5/122
Fig.1  SD-BASNet网络结构
Fig.2  标准卷积与DSC对比
Fig.3  DSRM结构
Fig.4  不同扩张率的感受野示意图[21]
序号 网络 参数量/106 训练时间/h
BASNet 87.06 11.27
BASNet+DSC 61.54 10.79
BASNet+DC 87.06 11.77
BASNet+DSC+DC(SD-BASNet) 61.96 10.91
Tab.1  不同网络的参数量与时间分析
网络 mIoU mPA 召回率 精确率 F1
PSPNet 73.74 80.43 89.62 62.86 73.89
SegNet 77.67 83.26 93.27 67.87 78.57
DeepLabV3 82.30 87.07 94.34 75.39 83.80
SE-UNet 82.95 87.37 95.43 75.74 84.46
UNet++ 83.77 87.92 96.09 76.69 85.30
BASNet 90.10 93.88 98.40 87.44 89.92
SD-BASNet 92.25 96.59 96.50 93.79 92.61
Tab.2  不同网络的检测结果
Fig.5  不同场景下建筑物示例图
网络 mIoU mPA 召回率 精确率 F1
PSPNet 74.30 79.84 89.84 61.46 75.26
SegNet 74.64 82.24 96.84 65.48 78.13
DeepLabV3 82.17 87.93 96.80 77.06 85.81
SE-UNet 83.59 88.81 97.87 78.43 87.08
UNet++ 84.77 89.92 97.09 79.69 87.30
BASNet 92.89 96.56 93.99 96.01 94.99
SD-BASNet 93.07 96.81 94.71 96.17 95.41
Tab.3  小尺度建筑物的检测结果
Fig.6  小尺度建筑物提取结果
网络 mIoU mPA 召回率 精确率 F1
PSPNet 46.14 76.51 78.49 53.75 63.14
SegNet 81.04 87.69 95.42 77.37 85.45
DeepLabV3 81.58 87.97 96.23 77.56 85.89
SE-UNet 83.09 88.80 97.99 78.46 87.15
UNet++ 86.86 84.79 97.14 77.14 85.02
BASNet 89.36 93.58 94.40 90.61 92.51
SD-BASNet 90.18 94.50 94.57 91.81 93.17
Tab.4  多尺度建筑物的检测结果
Fig.7  多尺度建筑物提取结果
网络 mIoU mPA 召回率 精确率 F1
PSPNet 39.58 40.72 40.72 58.62 56.71
SegNet 82.62 90.25 87.19 90.14 88.64
DeepLabV3 84.50 91.90 92.57 88.09 90.28
SE-UNet 88.21 93.85 93.56 91.80 92.67
UNet++ 87.59 92.16 93.31 90.34 91.31
BASNet 91.76 95.39 92.70 97.12 94.86
SD-BASNet 92.34 95.95 92.49 97.59 95.50
Tab.5  大尺度建筑物的检测结果
Fig.8  大尺度建筑物提取结果
网络 mIoU mPA 召回率 精确率 F1
BASNet 90.10 93.88 98.40 87.44 89.92
BASNet+DSC 86.39 94.80 91.39 93.05 92.70
BASNet+DC 92.56 95.01 96.16 93.24 92.12
SD-BASNet 92.25 96.59 96.50 93.79 92.61
Tab.6  消融实验检测结果
Fig.9  消融实验对比结果
[1] 张卓尔, 潘俊, 舒奇迪. 基于双路细节关注网络的遥感影像建筑物提取[J]. 武汉大学学报(信息科学版), 2024, 49(3):376-388.
Zhang Z E, Pan J, Shu Q D. Building extraction based on dual-stream detail-concerned network[J]. Geomatics and Information Science of Wuhan University, 2024, 49(3):376-388.
[2] 李治, 隋正伟, 傅俏燕, 等. 基于形态学序列和多源先验信息的城市建筑物高分遥感提取[J]. 遥感学报, 2023, 27(4):998-1008.
Li Z, Sui Z W, Fu Q Y, et al. High-resolution remote sensing extraction of urban buildings based on morphological sequences and multi-source a priori information[J]. National Remote Sensing Bulletin, 2023, 27(4):998-1008.
[3] 张云佐, 郭威, 武存宇. 融合CNN和Transformer的遥感图像建筑物快速提取[J]. 光学精密工程, 2023, 31(11):1700-1709.
Zhang Y Z, Guo W, Wu C Y. Fast extraction of buildings from remote sensing images by fusion of CNN and Transformer[J]. Optics and Precision Engineering, 2023, 31(11):1700-1709.
[4] Otsu N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems,Man,and Cybernetics, 1979, 9(1):62-66.
[5] Zhang M, Zhang L, Cheng H D. A neutrosophic approach to image segmentation based on watershed method[J]. Signal Processing, 2010, 90(5):1510-1517.
[6] Prewitt J M S. Object enhancement and extraction[J]. Picture Processing and Psychopictorics, 1970, 10(1):15-19.
[7] Luo L, Li P, Yan X. Deep learning-based building extraction from remote sensing images:A comprehensive review[J]. Energies, 2021, 14(23):7982.
[8] 李星华, 白学辰, 李正军, 等. 面向高分影像建筑物提取的多层次特征融合网络[J]. 武汉大学学报(信息科学版), 2022, 47(8):1236-1244.
Li X H, Bai X C, Li Z J, et al. High-resolution image building extraction based on multi-level feature fusion network[J]. Geomatics and Information Science of Wuhan University, 2022, 47(8):1236-1244.
[9] Diwan T, Anirudh G, Tembhurne J V. Object detection using YOLO:Challenges,architectural successors,datasets and applications[J]. Multimedia Tools and Applications, 2023, 82(6):9243-9275.
[10] Tahraoui A, Kheddam R, Belhadj-Aissa A. Land change detection in sentinel-2 images using IR-MAD and deep neural network[C]//2023 International Conference on Earth Observation and Geo-Spatial Information (ICEOGI). IEEE, 2023:1-6.
[11] Feng W, Sui H, Hua L, et al. Building extraction from VHR remote sensing imagery by combining an improved deep convolutional encoder-decoder architecture and historical land use vector map[J]. International Journal of Remote Sensing, 2020, 41(17):6595-6617.
[12] Hosseinpoor H, Samadzadegan F. Convolutional neural network for building extraction from high-resolution remote sensing images[C]//2020 International Conference on Machine Vision and Ima-ge Processing (MVIP). IEEE, 2020:1-5.
[13] Ji S, Wei S, Lu M. Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery data set[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(1):574-586.
[14] Bouvrie J. Notes on convolutional neural networks[J]. In Practice,2006:47-60.
[15] Cai Y, Chen D, Tang Y, et al. Multi-scale building instance extraction framework in high resolution remote sensing imagery based on feature pyramid object-aware convolution neural network[C]//2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS. IEEE,2021:2779-2782.
[16] Das P, Chand S. AttentionBuildNet for building extraction from ae-rial imagery[C]// 2021 International Conference on Computing,Communication,and Intelligent Systems (ICCCIS). IEEE,2021:576-580.
[17] Zhang Z, Zhang C, Li W. Semantic segmentation of urban buildings from VHR remotely sensed imagery using attention-based CNN[C]// IEEE International Geoscience and Remote Sensing Symposium. IEEE,2020:1833-1836.
[18] 王华俊, 葛小三. 一种轻量级的DeepLabv3+遥感影像建筑物提取方法[J]. 自然资源遥感, 2022, 34(2):128-135.doi:10.6046/zrzyyg.2021219.
Wang H J, Ge X S. Lightweight DeepLabv3+ building extraction method from remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(2):128-135.doi:10.6046/zrzyyg.2021219.
[19] Qin X, Fan D P, Huang C, et al. Boundary-aware segmentation network for mobile and web applications[J/OL]. 2021: 2101.04704. https://arxiv.org/abs/2101.04704v2.
[20] Chollet F. Xception:Deep learning with depthwise separable convolutions[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2017:1800-1807.
[21] Yu F, Koltun V. Multi-scale context aggregation by dilated convolutions[J/OL]. 2015: 1511.07122. https://arxiv.org/abs/1511.07122v3.
[22] Howard A G, Zhu M, Chen B, et al. MobileNets: Efficient convolutional neural networks for mobile vision applications[J/OL]. 2017: 1704.04861. https://arxiv.org/abs/1704.04861v1.
[23] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6):84-90.
[24] Tan M, Le Q V. EfficientNet:Rethinking model scaling for convolutional neural networks[J/OL].2019: 1905.11946. https://arxiv.org/abs/1905.11946v5.
[25] 季顺平, 魏世清. 遥感影像建筑物提取的卷积神经元网络与开源数据集方法[J]. 测绘学报, 2019, 48(4):448-459.
doi: 10.11947/j.AGCS.2019.20180206
Ji S P, Wei S Q. Building extraction via convolutional neural networks from an open remote sensing building dataset[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(4):448-459.
doi: 10.11947/j.AGCS.2019.20180206
[26] Zhao H, Shi J, Qi X, et al. Pyramid scene parsing network[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2017:6230-6239.
[27] Badrinarayanan V, Kendall A, Cipolla R. SegNet:A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12):2481-2495.
doi: 10.1109/TPAMI.2016.2644615 pmid: 28060704
[28] Chen L C, Papandreou G, Schroff F, et al. Rethinking atrous convolution for semantic image segmentation[J/OL]. 2017: 1706.05587. https://arxiv.org/abs/1706.05587v3.
[29] 刘浩, 骆剑承, 黄波, 等. 基于特征压缩激活Unet网络的建筑物提取[J]. 地球信息科学学报, 2019, 21(11):1779-1789.
doi: 10.12082/dqxxkx.2019.190285
Liu H, Luo J C, Huang B, et al. Building extraction based on SE-unet[J]. Journal of Geo-Information Science, 2019, 21(11):1779-1789.
[30] Zhou Z, Siddiquee M M R, Tajbakhsh N, et al. UNet:Redesigning skip connections to exploit multiscale features in image segmentation[J]. IEEE Transactions on Medical Imaging, 2020, 39(6):1856-1867.
[1] 刘晨晨, 葛小三, 武永斌, 余海坤, 张蓓蓓. 基于混合注意力机制和Deeplabv3+的遥感影像建筑物提取方法[J]. 自然资源遥感, 2025, 37(1): 31-37.
[2] 曲海成, 梁旭. 融合混合注意力机制与多尺度特征增强的高分影像建筑物提取[J]. 自然资源遥感, 2024, 36(4): 107-116.
[3] 刘广进, 王光辉, 毕卫华, 刘慧杰, 杨化超. 基于DenseNet与注意力机制的遥感影像云检测算法[J]. 自然资源遥感, 2022, 34(2): 88-96.
[4] 薛白, 王懿哲, 刘书含, 岳明宇, 王艺颖, 赵世湖. 基于孪生注意力网络的高分辨率遥感影像变化检测[J]. 自然资源遥感, 2022, 34(1): 61-66.
[5] 武宇, 张俊, 李屹旭, 黄康钰. 基于改进U-Net的建筑物集群识别研究[J]. 国土资源遥感, 2021, 33(2): 48-54.
[6] 卢麒, 秦军, 姚雪东, 吴艳兰, 朱皓辰. 基于多层次感知网络的GF-2遥感影像建筑物提取[J]. 国土资源遥感, 2021, 33(2): 75-84.
[7] 胡苏李扬, 李辉, 顾延生, 黄咸雨, 张志麒, 汪迎春. 基于高分辨率遥感影像的神农架大九湖湿地土地利用类型变化及其驱动力分析——来自长时间尺度多源遥感信息的约束[J]. 国土资源遥感, 2021, 33(1): 221-230.
[8] 卫虹宇, 赵银娣, 董霁红. 基于改进RetinaNet的冷却塔目标检测[J]. 国土资源遥感, 2020, 32(4): 68-73.
[9] 吴同, 彭玲, 胡媛. 基于SU-RetinaNet的高分辨率遥感影像非正规垃圾堆检测[J]. 国土资源遥感, 2020, 32(3): 90-97.
[10] 康晋洁, 戚浩平, 杨清华, 陈华. 道路通行障碍物遥感检测与通过性评价[J]. 国土资源遥感, 2020, 32(2): 94-102.
[11] 付盈, 国巧真, 潘应阳, 汪东川. 基于SPOT6数据的建筑物提取规则研究[J]. 国土资源遥感, 2017, 29(3): 65-69.
[12] 岳梦雪, 秦昆, 张恩兵, 张晔, 曾诚. 基于数据场和密度聚类的高分辨率影像居民区提取[J]. 国土资源遥感, 2017, 29(3): 92-97.
[13] 王旭东, 段福洲, 屈新原, 李丹, 余攀锋. 面向对象和SVM结合的无人机数据建筑物提取[J]. 国土资源遥感, 2017, 29(1): 97-103.
[14] 邓曾, 李丹, 柯樱海, 吴燕晨, 李小娟, 宫辉力. 基于改进SVM算法的高分辨率遥感影像分类[J]. 国土资源遥感, 2016, 28(3): 12-18.
[15] 王雪, 李培军, 姜莎莎, 刘婧, 宋本钦. 利用机载LiDAR数据和高分辨率图像提取复杂城区建筑物[J]. 国土资源遥感, 2016, 28(2): 106-111.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发