Please wait a minute...
 
自然资源遥感  2022, Vol. 34 Issue (1): 61-66    DOI: 10.6046/zrzyyg.2021122
     技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于孪生注意力网络的高分辨率遥感影像变化检测
薛白(), 王懿哲, 刘书含, 岳明宇, 王艺颖, 赵世湖
自然资源部国土卫星遥感应用中心, 北京 100048
Change detection of high-resolution remote sensing images based on Siamese network
XUE Bai(), WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu
Land Satellite Remote Sensing Application Center, Ministry of Natural Resources, Beijing 100048, China
全文: PDF(3110 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

随着遥感影像空间分辨率的提升,地物成像特征愈加复杂,基于纹理表达和局部语义等技术的变化检测方法已很难满足需求。为提升高分辨率遥感影像的变化检测精度,构建了一套较大规模的0.8~2 m高分辨率遥感人类活动变化检测数据集(HRHCD-1.0); 同时将空间注意力和通道注意力机制引入孪生变化检测网络中,设计了具有更强上下文变化语义特征提取能力的孪生注意力变化检测网络。模型对比实验中,孪生注意力变化检测模型相比非注意力机制模型在验证集上平均交并比提升24%,检测结果更完整,有效缓解了非注意力模型边界较差、局部漏检和空洞等问题。后处理方法对检测结果的小图斑去除、填洞和图形学平滑等处理,提升了图斑图形效果。变化检测训练中样本量增加对于模型应用的精度和泛化能力有显著提升作用。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
薛白
王懿哲
刘书含
岳明宇
王艺颖
赵世湖
关键词 高分辨率遥感影像变化检测深度学习注意力机制    
Abstract

With the improvement of the spatial resolution of remote sensing images, the imaging features of ground objects have become increasingly complex. As a result, the change detection methods of remote sensing images based on texture expression and local semantics are difficult to meet the demand. To improve the change detection accuracy of high-resolution remote sensing images, this study constructed a large-scale remote sensing-based human activity change detection dataset (HRHCD-1.0) with a high resolution of 0.8~2 m. Moreover, this study designed an attention-based Siamese change detection network with a strong capability to extract contextual semantic features by introducing spatial attention and channel attention mechanisms. In the model comparative experiment, the attention-based Siamese change detection network proposed in this study increased the mean intersection over union on the validation set by 24% and showed more complete detection results compared to the models using non-attention mechanisms, effectively alleviating the problems of poor boundary, local omission, and holes of models using non-attention mechanisms. The post-processing method allows for small polygon removal, hole filling, and graphic smoothing of the detection results, improving the processing graphic effects of polygons. Furthermore, the increase in the sample size in the training of change detection significantly improves the application accuracy and generalization ability of the attention-based Siamese change detection network proposed in this study.

Key wordshigh-resolution remote sensing images    change detection    deep learning    attention mechanism
收稿日期: 2021-04-23      出版日期: 2022-03-14
ZTFLH:  TP79  
基金资助:民用航天“十三五”预先研究项目“测绘信息产品作业测试和服务规范研究”编号资助(D040401)
作者简介: 薛白(1988-),女,硕士,工程师,主要从事遥感数字图像处理、土地利用与动态监测等相关研究。Email: 1069460245@qq.com
引用本文:   
薛白, 王懿哲, 刘书含, 岳明宇, 王艺颖, 赵世湖. 基于孪生注意力网络的高分辨率遥感影像变化检测[J]. 自然资源遥感, 2022, 34(1): 61-66.
XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2021122      或      https://www.gtzyyg.com/CN/Y2022/V34/I1/61
数据集 变化类型 分辨率/
m
数据量/
数据尺
寸/像素
LEVIR-CD[11] 建筑物 0.5 637 1 024×1 024
Google Data-
set[12]
建筑物 0.55 20 1 006×1 168~
4 936×5 224
WHUCD[13] 建筑物 0.2 1 15 354×32 507
AICD[14] 建筑物、临时目标 约0.1~
0.5
10 000 256×256
SECOND[15] 多类型 约1 4 662 512×512
HRSCD[16] 多类型 0.5 2 10 000×10 000
Tab.1  主要的开源高分辨率遥感变化检测数据集
Fig.1  HRHCD数据集样本正例与负例示例
Fig.2  孪生注意力机制变化检测网络结构
类别 前时相影像 后时相影像 Siam-Diff结果 Siam-Conc结果 Siam-Atte结果
建筑群
推填土
道路
Tab.2  
Fig.3  后处理优化结果
样本量/组 预测图斑/个 真值图斑/个 R/% P/%
5 000 1 197 390 51.3 16.8
10 000 734 390 66.9 35.6
20 000 667 390 72.8 42.7
Tab.3  不同训练数据规模下模型应用效果
Fig.4  非业务应用类型的误检测图斑示例
[1] Tewkesbury A P, Comber A J, Tate N J, et al. A critical synjournal of remotely sensed optical image change detection techniques[J]. Remote Sensing of Environment, 2015, 160:1-14.
doi: 10.1016/j.rse.2015.01.006
[2] Bruzzone L, Prieto F. Automatic analysis of the difference image for unsupervised change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(3):1171-1182.
doi: 10.1109/36.843009
[3] Celik T. Unsupervised change detection in satellite images using principal component analysis and K-means clustering[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(4):772-776.
doi: 10.1109/LGRS.2009.2025059
[4] 张良培, 武辰. 多时相遥感影像变化检测的现状与展望[J]. 测绘学报, 2017, 46(10):1447-1459.
Zhang L P, Wu C. Advance and future development of change detection for multi-temporal remote sensing imagery[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1447-1459.
[5] Saux B L, Randrianarivo H. Urban change detection in SAR images by interactive learning[C]// IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2013:3990-3993.
[6] Jackson R D. Spectral indices in N-space[J]. Remote Sensing of Environment, 1983, 13(5):409-421.
doi: 10.1016/0034-4257(83)90010-X
[7] 黄维, 黄进良, 王立辉, 等. 基于PCA的变化向量分析法遥感影像变化检测[J]. 自然资源遥感, 2016, 28(1):22-27.doi: 10.6046/gtzyyg.2016.01.04.
doi: 10.6046/gtzyyg.2016.01.04
Huang W, Huang J L, Wang L H, et al. Remote sensing image change detection based on change vector analysis of PCA compoment[J]. Remote Sensing for Land and Resources, 2016, 28(1):22-27.doi: 10.6046/gtzyyg.2016.01.04.
doi: 10.6046/gtzyyg.2016.01.04
[8] 李亮, 舒宁, 王凯, 等. 融合多特征的遥感影像变化检测方法[J]. 测绘学报, 2014, 43(9):945-953.
Li L, Shu N, Wang K, et al. Change detection method for remote sensing images based on multi-features fusion[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(9):945-953.
[9] Zhang H, Gong M G, Zhang P Z, et al. Feature-level change detection using deep representation and feature change analysis for multispectral imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(11):1666-1670.
doi: 10.1109/LGRS.2016.2601930
[10] Peng D F, Zhang Y J, Guan H Y. End-to-end change detection for high resolution satellite images using improved UNet++[J]. Remote Sensing, 2019, 11(11):1382.
doi: 10.3390/rs11111382
[11] Chen H, Shi Z. A spatial-temporal attention-based method and a new dataset for remote sensing image change detection[J]. Remote Sensing, 2020, 12(10):1662.
doi: 10.3390/rs12101662
[12] Peng D, Bruzzone L, Zhang Y, et al. SemiCDNet:A semisupervised convolutional neural network for change detection in high resolution remote-sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(7):5891-5906.
doi: 10.1109/TGRS.2020.3011913
[13] Ji S P, Wei S Q, Lu M, et al. Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery data set[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(1):574-586.
doi: 10.1109/TGRS.2018.2858817
[14] Bourdis N, Marraud D, Sahbi H. Constrained optical flow for aerial image change detection[C]// 2011 IEEE International Geoscience and Remote Sensing Symposium, 2011:4176-4179.
[15] Yang K P, Xia G S, Liu Z C, et al. Asymmetric siamese networks for semantic change detection[C/OL].[2020-10-12].https://arxiv.org/abs/2010.05687v1.
[16] Daudt R C, Saux B L, Boulch A, et al. Multitask learning for large-scale semantic change detection[J]. Computer Vision and Image Understanding, 2019, 187:102783.
doi: 10.1016/j.cviu.2019.07.003
[17] Daudt R C, Saux B L, Boulch A. Fully convolutional siamese networks for change detection[C]// 2018 25th IEEE International Conference on Image Processing (ICIP).IEEE, 2018.
[18] Chen J, Yuan Z, Peng J, et al. DASNet:Dual attentive fully convolutional siamese networks for change detection of high resolution satellite images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14:1194-1206.
doi: 10.1109/JSTARS.4609443
[1] 刘立, 董先敏, 刘娟. 顾及地学特征的遥感影像语义分割模型性能评价方法[J]. 自然资源遥感, 2023, 35(3): 80-87.
[2] 牛祥华, 黄微, 黄睿, 蒋斯立. 基于注意力特征融合的高保真遥感图像薄云去除[J]. 自然资源遥感, 2023, 35(3): 116-123.
[3] 董婷, 符潍奇, 邵攀, 高利鹏, 武昌东. 基于改进全连接条件随机场的SAR影像变化检测[J]. 自然资源遥感, 2023, 35(3): 134-144.
[4] 张仙, 李伟, 陈理, 杨昭颖, 窦宝成, 李瑜, 陈昊旻. 露天开采矿区要素遥感提取研究进展及展望[J]. 自然资源遥感, 2023, 35(2): 25-33.
[5] 闫涵, 张毅. 利用GF-6影像结合国土“三调”开展西部地区县域自然资源调查[J]. 自然资源遥感, 2023, 35(2): 277-286.
[6] 刁明光, 刘勇, 郭宁博, 李文吉, 江继康, 王云霄. 基于Mask R-CNN的遥感影像疏林地智能识别方法[J]. 自然资源遥感, 2023, 35(2): 97-104.
[7] 郑宗生, 刘海霞, 王振华, 卢鹏, 沈绪坤, 唐鹏飞. 改进3D-CNN的高光谱图像地物分类方法[J]. 自然资源遥感, 2023, 35(2): 105-111.
[8] 邱磊, 张学志, 郝大为. 基于深度学习的视频SAR动目标检测与跟踪算法[J]. 自然资源遥感, 2023, 35(2): 157-166.
[9] 张可, 张庚生, 王宁, 温静, 李宇, 杨俊. 基于遥感和深度学习的输电线路地表水深预测[J]. 自然资源遥感, 2023, 35(1): 213-221.
[10] 金远航, 徐茂林, 郑佳媛. 基于改进YOLOv4-tiny的无人机影像枯死树木检测算法[J]. 自然资源遥感, 2023, 35(1): 90-98.
[11] 胡建文, 汪泽平, 胡佩. 基于深度学习的空谱遥感图像融合综述[J]. 自然资源遥感, 2023, 35(1): 1-14.
[12] 赵凌虎, 袁希平, 甘淑, 胡琳, 丘鸣语. 改进Deeplabv3+的高分辨率遥感影像道路提取模型[J]. 自然资源遥感, 2023, 35(1): 107-114.
[13] 吕雅楠, 朱红, 孟健, 崔成玲, 宋其淇. 面向高分辨率遥感影像车辆检测的深度学习模型综述及适应性研究[J]. 自然资源遥感, 2022, 34(4): 22-32.
[14] 谭海, 张荣军, 樊文锋, 张一帆, 徐航. 融合多尺度特征的国产光学影像辐射异常分类检测[J]. 自然资源遥感, 2022, 34(4): 97-104.
[15] 苏玮, 林阳阳, 岳文, 陈颖彪. 基于U-Net卷积神经网络的广东省海水养殖区识别及其时空变化遥感监测[J]. 自然资源遥感, 2022, 34(4): 33-41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发