Please wait a minute...
 
自然资源遥感  2025, Vol. 37 Issue (5): 162-171    DOI: 10.6046/zrzyyg.2024271
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
基于神经网络的InSAR/GNSS深度融合尾矿库坝体时序监测及预测研究
吕林伟1,2(), 王瑞1,2(), 许林涛3, 黄诗乔1, 黄帅帅4, 林敏5, 贺一波6, 何倩7, 晏慧能1,2, 陈尚波8
1.赣南科技学院资源与土木工程学院,赣州 341000
2.赣州市资源与环境遥感重点实验室,赣州 341000
3.中国石油集团渤海石油装备制造有限公司,天津 300280
4.江西理工大学土木与测绘工程学院,赣州 341000
5.安徽省龙桥矿业股份有限公司,合肥 230000
6.山西能源学院,晋中 030600
7.湖北国土资源职业学院,武汉 430090
8.江西省应急管理科学研究院,南昌 330000
Time-series monitoring and prediction of tailings dams through neural network-based deep infusion of InSAR and GNSS data
LYU Linwei1,2(), WANG Rui1,2(), XU Lintao3, HUANG Shiqiao1, HUANG Shuaishuai4, LIN Min5, HE Yibo6, HE Qian7, YAN Huineng1,2, CHEN Shangbo8
1. College of Resources and Civil Engineering,Gannan University of Science and Technology,Ganzhou 341000,China
2. Ganzhou Key Laboratory of Remote Sensing for Resources and Environment,Ganzhou 341000,China
3. CNPC Bohai Oilfield Equipment Manufacturing Co.,Ltd.,Tianjin 300280,China
4. School of Civil and Surveying Engineering,Jiangxi University of Science and Technology,Ganzhou 341000,China
5. Anhui Longqiao Mining Co.,Ltd.,Hefei 230000,China
6. Shanxi Energy Institute,Jinzhong 030600,China
7. Hubei Vocational College of Land and Resources,Wuhan 430090,China
8. Jiangxi Provincial Emergency Management Science Research Institute,Nanchang 330000,China
全文: PDF(4130 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

尾矿库坝体稳定性时序监测及预测一直都是我国矿山产业安全方面研究重点。该文利用InSAR与GNSS技术获取安徽省某尾矿库坝体表面6个特征监测点的26期纵向形变数据,通过建立附有限制参数的平差模型,以监测点的初始三维坐标作为多项式改正参数,对合成孔径雷达干涉测量技术(interferometric synthetic aperture Radar,InSAR)数据与全球导航卫星定位系统(global navigation satellite system,GNSS)数据进行融合以提高数据精度,并利用BP神经网络对监测点的形变数据进行时序预测,从而得到监测点的未来形变数据。实验结果表明,GNSS与InSAR数据融合后以均方根误差(root mean square error,RMSE)作为精度评定标准,计算并比较融合前、后每一期形变数据与形变真值的RMSE,得到融合后RMSE较融合前下降最多70.61%,平均下降25.91%。采用神经网络模型对融合后的1~22期InSAR数据反复训练,以23~26期InSAR形变数据作为测试集,最后输出各点23~26期数据。通过与GNSS数据计算各点网络输出值RMSE<1.5 mm。研究成果能够为尾矿库坝体时序稳定性监测及预测提供可靠技术支撑。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吕林伟
王瑞
许林涛
黄诗乔
黄帅帅
林敏
贺一波
何倩
晏慧能
陈尚波
关键词 尾矿库SBASInSAR附有限制参数的平差模型BP    
Abstract

The time-series monitoring and prediction of tailings dam stability have always been a major concern in China’s mine safety research. Focusing on a tailings dam in Anhui province,this study obtained 26 periods of longitudinal deformation data from six characteristic monitoring points on the dam surface,using InSAR and GNSS technologies. Based on the data,a least-squares adjustment model with restricted parameters was established. Combined with the initial three-dimensional coordinates of the monitoring points as polynomial correction parameters,the InSAR and GNSS data were fused to improve the data accuracy. Then,time-series prediction of deformation data was conducted for the monitoring points using the back propagation (BP) neural network,thus obtaining their future deformation data. Experiments were carried out to compute and compare the deformation data and corresponding root mean square error (RMSE) of each period before and after fusion,wherein the fused GNSS and InSAR data were evaluated with the root mean square error (RMSE) as the accuracy standard. The results showed that the post-fusion RMSE decreased by up to 70.61% and by at least 4.34% (average:25.91%),compared to pre-fusion data. Furthermore,the neural network model was used to repeatedly train the fused InSAR data from periods 1 to 22,with periods 23 to 26 serving as the test set,ultimately outputting the data of each point for periods 23 to 26. Compared to the GNSS data,the RMSE of the outputs were less than 1.5 mm. These results can provide reliable technical support for the time-series monitoring and prediction of tailings dam stability.

Key wordstailings pond    SBASInSAR    least-squares adjustment model with restricted parameters    back propagation (BP)
收稿日期: 2024-08-16      出版日期: 2025-10-28
ZTFLH:  TP79  
  P237  
基金资助:国家自然科学基金项目“UAV/InSAR深度融合采动区地表形变损坏信息提取关键技术研究”(52364018);江西省应急管理科学研究院自主研发计划项目“InSAR技术多因素扰动离子型稀土原地浸矿边坡失稳动态监测研究”(YKY-ZY-2024-01)
通讯作者: 王 瑞(1985-),男,副教授,主要从事InSAR/GNSS数据处理及应用研究。Email:wangrui@gnust.edu.cn
作者简介: 吕林伟(2003-),男,主要从事尾矿库形变监测研究。Email:719519920@qq.com
引用本文:   
吕林伟, 王瑞, 许林涛, 黄诗乔, 黄帅帅, 林敏, 贺一波, 何倩, 晏慧能, 陈尚波. 基于神经网络的InSAR/GNSS深度融合尾矿库坝体时序监测及预测研究[J]. 自然资源遥感, 2025, 37(5): 162-171.
LYU Linwei, WANG Rui, XU Lintao, HUANG Shiqiao, HUANG Shuaishuai, LIN Min, HE Yibo, HE Qian, YAN Huineng, CHEN Shangbo. Time-series monitoring and prediction of tailings dams through neural network-based deep infusion of InSAR and GNSS data. Remote Sensing for Natural Resources, 2025, 37(5): 162-171.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2024271      或      https://www.gtzyyg.com/CN/Y2025/V37/I5/162
Fig.1  监测区地理位置及点位大致分布图
观测点 X Y Z
#1 4 695.661 5 138.075 30.438
#2 4 667.625 5 166.371 30.377
#3 4 639.355 5 194.903 30.446
#4 4 611.383 5 223.137 30.502
#5 4 583.200 5 251.577 30.466
#6 4 554.937 5 280.115 30.271
Tab.1  观测点三维空间坐标数据
Fig.2  InSAR数据处理流程
Fig.3  数据融合流程图
Fig.4  神经网络结构示意图
期数 形变量/mm 期数 形变量/mm
#1 #2 #3 #4 #5 #6 #1 #2 #3 #4 #5 #6
1 0.637 1 0.615 5 0.979 5 -0.082 2 0.234 0 0.803 0 14 -4.956 4 -2.788 8 -2.134 8 -2.791 1 -6.699 8 -5.676 9
2 -1.460 7 -2.950 4 -3.993 2 -2.491 5 -4.643 6 -6.334 6 15 0.427 4 0.842 5 0.981 6 0.797 3 -2.098 1 -6.149 1
3 1.273 6 1.239 1 0.801 0 -0.811 3 -0.381 7 -0.333 6 16 -2.615 4 -1.124 9 -0.962 9 -2.236 6 -1.405 7 -7.558 9
4 2.658 6 2.072 8 1.490 7 7.412 5 0.520 3 2.025 0 17 5.109 2 4.628 5 -2.439 1 -1.143 9 -4.825 7 -3.887 0
5 0.474 9 0.049 4 0.335 2 0.169 2 -0.244 7 -0.795 4 18 3.069 5 4.539 3 4.668 6 -3.581 6 -8.931 5 -6.462 6
6 0.629 5 1.733 3 2.096 4 0.672 0 0.412 4 0.601 5 19 8.841 9 10.362 4 15.089 3 13.455 7 11.380 1 10.399 6
7 -1.319 0 -0.113 3 -0.880 3 -1.401 8 -1.241 2 -0.475 0 20 5.687 2 6.759 1 0.908 7 -0.348 7 -5.607 8 -1.784 0
8 -1.484 2 -0.624 5 -0.133 0 -0.926 9 -0.990 5 0.117 2 21 6.497 3 9.412 2 1.143 2 -2.409 3 -6.108 6 -4.407 3
9 0.121 5 0.494 8 -0.430 2 0.221 7 -1.595 3 0.800 5 22 5.618 1 4.864 5 0.958 5 4.878 0 0.231 5 -0.646 1
10 2.128 4 2.686 0 1.283 6 0.297 1 0.091 0 0.500 9 23 6.627 7 8.626 6 5.340 9 -2.485 7 -2.274 1 -1.678 8
11 -1.245 6 0.287 7 -1.665 7 -2.530 0 -3.448 7 1.209 5 24 6.440 3 9.453 2 4.616 0 1.632 2 -2.200 9 1.804 0
12 -1.126 7 -1.372 2 0.561 0 3.087 9 -0.439 2 0.131 3 25 5.362 4 6.862 3 5.398 5 2.257 3 -2.408 6 -2.099 4
13 -2.288 3 0.465 3 2.618 1 1.317 1 -3.416 0 -3.081 8 26 3.346 7 3.626 3 0.785 0 -2.959 6 -7.874 3 -7.624 1
Tab.2  各点InSAR数据与GNSS融合后的数据
Fig.5  融合后数据与InSAR,GNSS数据对比图
Fig.6  RMSE分布图
Fig.7  2种模型融合值残差图
Fig.8  网络输出值与融合值对比图
点号 #1 #2 #3 #4 #5 #6
RMSE 0.610 5 0.962 5 1.290 4 0.648 8 0.764 1 1.199 8
Tab.3  网络预测输出值与融合值的RMSE
点号 #1 #2 #3 #4 #5 #6
神经网络输出第27期形变数据 3.503 5 7.264 9 4.717 8 3.492 5 2.992 9 -13.474 3
Tab.4  由神经网络预测的第27期监测点形变值
[1] 李如仁, 孙加瑶. 融合SBAS-InSAR与GS-LSTM的尾矿库沉降监测与预测[J]. 金属矿山, 2023(1):102-109.
Li R R, Sun J Y. Subsidence monitoring and prediction of tailings pond combined with SBAS-InSAR and GS-LSTM[J]. Metal Mine, 2023(1):102-109.
[2] 马东升. 基于GNSS形变监测技术的尾矿库安全在线监测系统在司家营北区尾矿库的应用[J]. 中国金属通报, 2019(11):140-141.
Ma D S. Application of safety online monitoring system of tailings pond based on GNSS deformation monitoring technology in tailings pond in Sijiaying North District[J]. China Metal Bulletin, 2019(11):140-141.
[3] 陈娅男. 基于时序InSAR尾矿坝(库区)监测及灾害识别[D]. 昆明: 昆明理工大学, 2020.
Chen Yanan. Monitoring and disaster identification of tailings dam ( reservoir area ) based on time series InSAR[D]. Kunming: Kunming University of Science and Technology, 2020.
[4] 朱建军, 杨泽发, 李志伟. InSAR矿区地表三维形变监测与预计研究进展[J]. 测绘学报, 2019, 48(2):135-144.
doi: 10.11947/j.AGCS.2019.20180188
Zhu J J, Yang Z F, Li Z W. Recent progress in retrieving and predicting mining-induced 3D displace-ments using InSAR[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(2):135-144.
doi: 10.11947/j.AGCS.2019.20180188
[5] 许才军, 王华, 黄劲松. GPS与INSAR数据融合研究展望[J]. 武汉大学学报(信息科学版), 2003, 28(s1):58-61,78.
Xu C J, Wang H, Huang J S. Research prospect of data fusion between GPS and INSAR[J]. Geomatics and Information Science of Wuhan University, 2003, 28(s1):58-61,78.
[6] 刘国林, 张连蓬, 成枢, 等. 合成孔径雷达干涉测量与全球定位系统数据融合监测矿区地表沉降的可行性分析[J]. 测绘通报, 2005(11):10-13.
Liu G L, Zhang L P, Cheng S, et al. Feasibility analysis of monitoring mining surface substance using InSAR/GPS data fusion[J]. Bulletin of Surveying and Mapping, 2005(11):10-13.
[7] 曹海坤, 赵丽华, 张勤, 等. 利用附加系统误差参数的升降轨InSAR-GPS数据融合方法建立三维形变场[J]. 武汉大学学报(信息科学版), 2018, 43(9):1362-1368.
Cao H K, Zhao L H, Zhang Q, et al. Ascending and descending orbits InSAR-GPS data fusion method with additional systematic parameters for three-dimensional deformation field[J]. Geomatics and Information Science of Wuhan University, 2018, 43(9):1362-1368.
[8] 王洲. GNSS与InSAR地面形变监测深度融合[D]. 兰州: 兰州交通大学, 2021.
Wang Z. Deep fusion of GNSS and InSAR ground deformation monitoring[D]. Lanzhou: Lanzhou Jiatong University, 2021.
[9] 熊威, 孙志杰, 张必昌. 升降轨时序InSAR技术监测天津市地面沉降[J]. 地理空间信息, 2021, 19(12):45-49.
Xiong W, Sun Z J, Zhang B C. Surface subsidence monitoring in Tianjin based on ascending and descending time series InSAR technology[J]. Geospatial Information, 2021, 19(12):45-49.
[10] Memarian Sorkhabi O, Khajehzadeh M, Keawsawasvong S. Landslides monitoring with SBAS-InSAR and GNSS[J]. Physics and Chemistry Earth,Parts A/B/C, 2023, 132:103486.
[11] Wang R, Wu K, He Q, et al. A novel method of monitoring surface subsidence law based on probability integral model combined with active and passive remote sensing data[J]. Remote Sensing, 2022, 14(2):299.
[12] 赵华伟, 周林, 谭明伦, 等. 基于光学遥感和SBAS-InSAR的川渝输电网滑坡隐患早期识别[J]. 自然资源遥感, 2023, 35(4):264-272 doi:10.6046/zrzyyg.2022321.
Zhao H W, Zhou L, Tan M L, et al. Early identification of potential landslides for the Sichuan-Chongqing power grid based on optical remote sensing and SBAS-InSAR[J]. Remote Sensing for Natural Resources, 2023, 35(4):264-272 doi:10.6046/zrzyyg.2022321.
[13] 周定义, 左小清, 赵志芳, 等. 基于SBAS-InSAR和改进BP神经网络的城市地面沉降预测[J]. 地质通报, 2023, 42(10):1774-1783.
Zhou D Y, Zuo X Q, Zhao Z F, et al. Prediction of urban land subsidence by SBAS-InSAR and improved BP neural network[J]. Geological Bulletin of China, 2023, 42(10):1774-1783.
[14] 易邦进, 黄成, 傅涛, 等. 基于SBAS-InSAR 技术的中缅边境山区地质灾害隐患探测[J]. 自然资源遥感, 2023, 35(4):186-191.doi:10.6046/zrzyyg.2022261.
Yi B J, Huang C, Fu T, et al. SBAS-InSAR-based detection of geological hazards in alpine gorge areas near the China-Myanmar border[J]. Remote Sensing for Natural Resources, 2023, 35(4):186-191.doi:10.6046/zrzyyg.2022261.
[15] 刘青利, 隋立芬. 附加系统参数的平差模型研究[J]. 测绘学院学报, 2004, 21(1):5-7,10.
Liu Q L, Sui L F. On adjustment model with additional systematic parameters[J]. Journal of Institute of Surveying and Mapping, 2004, 21(1):5-7,10.
[16] 魏飞, 谭志祥, 邓喀中. 附加系统参数平差在二维控制网平差中的应用[J]. 煤炭技术, 2017, 36(3):139-141.
Wei F, Tan Z X, Deng K Z. Application in two-dimensional control network adjustment with additional system parameters adjustment[J]. Coal Technology, 2017, 36(3):139-141.
[17] 陈映彬, 文逸彦, 董国祥, 等. 基于BP人工神经网络与遗传算法的航速优化[J]. 舰船科学技术, 2024, 46(1):82-87.
Chen Y B, Wen Y Y, Dong G X, et al. Speed optimization based on BP artificial neural network and genetic algorithm[J]. Ship Science and Technology, 2024, 46(1):82-87.
[18] Guo J, Xi W, Yang Z, et al. Study on optimization method for InSAR baseline considering changes in vegetation coverage[J]. Sensors, 2024, 24(15):4783.
[19] 张焱飞, 李荣宗, 文逸彦, 等. 基于人工神经网络的实船航行主机能耗预估自学习模型[J]. 上海船舶运输科学研究所学报, 2019, 42(2):34-37.
Zhang Y F, Li R Z, Wen Y Y, et al. Self-learning artificial neural network model for pre-estimating ship energy consumption for a voyage[J]. Journal of Shanghai Ship and Shipping Research Institute, 2019, 42(2):34-37.
[20] 王瑞. 开采沉陷监测多源数据融合技术及应用研究[D]. 徐州: 中国矿业大学, 2022.
Wang R. Research on multi-source data fusion technology and its application in mining subsidence monitoring[D]. Xuzhou: China University of Mining and Technology, 2022.
[1] 刘晓亮, 王志华, 邢江河, 周睿, 杨晓梅, 刘岳明, 张俊瑶, 孟丹. 融合多源地理数据与高分辨率遥感影像的尾矿库识别与监测——以云南省个旧市为例[J]. 自然资源遥感, 2024, 36(1): 103-109.
[2] 陈昊宇, 项磊, 高贺, 牟金燚, 索晓晶, 滑博伟. 基于分数阶微分的土壤全氮高光谱反演[J]. 自然资源遥感, 2023, 35(3): 170-178.
[3] 张成业, 邢江河, 李军, 桑潇. 基于U-Net网络和GF-6影像的尾矿库空间范围识别[J]. 自然资源遥感, 2021, 33(4): 252-257.
[4] 高凯旋, 焦海明, 王新闯. 融合影像纹理、光谱与地形特征的森林冠顶高反演模型[J]. 国土资源遥感, 2020, 32(3): 63-70.
[5] 王海庆, 李丽, 陈玲, 许文佳, 杨金中, 刘琼. 基于尾矿库调查的西藏自治区金属矿开采强度分析[J]. 国土资源遥感, 2019, 31(2): 218-223.
[6] 马国锐, 马艳丽, 江满珍. 结合颜色直方图和LBP纹理的遥感影像分割[J]. 国土资源遥感, 2017, 29(3): 32-40.
[7] 安静, 姚国清, 朱西存. 苹果叶片氮素含量高光谱检测研究[J]. 国土资源遥感, 2016, 28(2): 67-71.
[8] 周亚敏, 张荣群, 马鸿元, 张健, 张小栓. 基于BP神经网络的盐湖矿物离子含量高光谱反演[J]. 国土资源遥感, 2016, 28(2): 34-40.
[9] 胡丹娟, 蒋金豹, 陈绪慧, 李京. 基于改进的BP神经网络裸露地表土壤水分反演模型对比[J]. 国土资源遥感, 2016, 28(1): 72-77.
[10] 高永志, 初禹, 梁伟. 黑龙江省矿集区尾矿库遥感监测与分析[J]. 国土资源遥感, 2015, 27(1): 160-163.
[11] 熊文成, 肖如林, 申文明, 付卓, 史园莉. 国产单极化SAR数据在锰渣尾矿库自动化识别中的应用[J]. 国土资源遥感, 2014, 26(4): 119-124.
[12] 方雪娟, 丁镭, 张志. 大冶陈贵镇小型尾矿库分布特征及其环境影响分析[J]. 国土资源遥感, 2013, 25(1): 155-159.
[13] 刘菊, 廖静娟, 沈国状. 基于全极化SAR数据反演鄱阳湖湿地植被生物量[J]. 国土资源遥感, 2012, 24(3): 38-43.
[14] 郝利娜, 张志, 何文熹, 陈腾. 鄂东南尾矿库高分辨率遥感图像识别因子研究[J]. 国土资源遥感, 2012, 24(3): 154-158.
[15] 谢斌, 俞乐, 张登荣. 基于GIS服务链的遥感影像分布式融合处理[J]. 国土资源遥感, 2011, 23(1): 138-142.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发