Please wait a minute...
 
自然资源遥感  2024, Vol. 36 Issue (1): 103-109    DOI: 10.6046/zrzyyg.2022480
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
融合多源地理数据与高分辨率遥感影像的尾矿库识别与监测——以云南省个旧市为例
刘晓亮1,2(), 王志华1,2, 邢江河3(), 周睿4, 杨晓梅1,2, 刘岳明1,2, 张俊瑶1,2, 孟丹1,2
1.中国科学院地理科学与资源研究所资源与环境信息系统国家重点实验室,北京 100101
2.中国科学院大学,北京 100049
3.中国矿业大学(北京)地球科学与测绘工程学院,北京 100083
4.京师天启(北京)科技有限公司,北京 100086
Identifying and monitoring tailings ponds by integrating multi-source geographic data and high-resolution remote sensing images: A case study of Gejiu City, Yunnan Province
LIU Xiaoliang1,2(), WANG Zhihua1,2, XING Jianghe3(), ZHOU Rui4, YANG Xiaomei1,2, LIU Yueming1,2, ZHANG Junyao1,2, MENG Dan1,2
1. State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. College of Geoscience and Surveying Engineering, China University of Mining and Technology(Beijing), Beijing 100083, China
4. Image Sky Beijing Technology Co., Ltd., Beijing 100086, China
全文: PDF(7058 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

尾矿库是具有高势能的重大危险源,对尾矿库空间范围开展快速识别与监测,及时掌握尾矿库数量及分布情况,对我国尾矿库的环境监管与治理具有重要意义。现有单纯基于遥感影像识别提取的思路,因缺乏尾矿库潜在目标针对性,易将裸露地表等混淆为尾矿库,给实际的尾矿库监测应用带来较大误差。为此,提出一种融合企业名录与空间分布点位、数字高程模型(digital elevation model,DEM)、道路网等多源地理数据与高分遥感影像的尾矿库提取方法。以云南省个旧市为研究区的应用验证结果表明: 融合多源地理数据可有效排除不存在尾矿库的干扰区域,尾矿库提取结果的精确率和召回率分别为83.9%和72.4%。该技术方案在全国尺度的尾矿库高频次、自动化遥感监测中具有广阔的应用前景。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘晓亮
王志华
邢江河
周睿
杨晓梅
刘岳明
张俊瑶
孟丹
关键词 多源地理数据遥感面向对象分类尾矿库多尺度分割    
Abstract

Tailings ponds are considerable hazard sources with high potential energy. Ascertaining the number and distribution of tailings ponds in a timely manner through rapid identification and monitoring of their spatial extents is critical for the environmental supervision and governance of tailings ponds in China. Due to the lack of pertinence for potential targets, identifying tailings ponds based on solely remote sensing images is prone to produce confusion between tailings ponds and exposed surfaces, resulting in significant errors in practical applications. This study proposed an extraction method for tailings ponds, which integrated enterprise directory, multi-source geographic data (e.g., data from spatial distribution points, digital elevation model (DEM), and road networks), and high-resolution remote sensing images. The application of this method in Gejiu City, Yunnan Province indicates that integrating multi-source geographic data can effectively exclude the interferential areas without tailings ponds, with the precision and recall rates of the extraction results reaching 83.9% and 72.4%, respectively. The method proposed in this study boasts significant application prospects in high-frequency and automated monitoring of tailings ponds nationwide.

Key wordsmulti-source geographic data    remote sensing    object-oriented classification    tailings pond    multi-scale segmentation
收稿日期: 2022-12-12      出版日期: 2024-03-13
ZTFLH:  TP79  
基金资助:国家重点研发计划项目“我国污染场地时空分布规律及其形成机制”(2018YFC1800100);LREIS自主创新项目“海岸带系统精细刻画与陆海统筹过程模拟调控”(KPI001)
通讯作者: 邢江河(1997-),男,博士研究生,研究方向为矿山生态监测与深度学习应用。Email: xingjh0929@163.com
作者简介: 刘晓亮(1995-),男,博士研究生,研究方向为海岸带遥感与地理信息系统。Email: liuxiaoliang@lreis.ac.cn
引用本文:   
刘晓亮, 王志华, 邢江河, 周睿, 杨晓梅, 刘岳明, 张俊瑶, 孟丹. 融合多源地理数据与高分辨率遥感影像的尾矿库识别与监测——以云南省个旧市为例[J]. 自然资源遥感, 2024, 36(1): 103-109.
LIU Xiaoliang, WANG Zhihua, XING Jianghe, ZHOU Rui, YANG Xiaomei, LIU Yueming, ZHANG Junyao, MENG Dan. Identifying and monitoring tailings ponds by integrating multi-source geographic data and high-resolution remote sensing images: A case study of Gejiu City, Yunnan Province. Remote Sensing for Natural Resources, 2024, 36(1): 103-109.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2022480      或      https://www.gtzyyg.com/CN/Y2024/V36/I1/103
Fig.1  研究区地理位置
(GF-6 B3(R),B2(G),B1(B)真彩色合成)
Fig.2  尾矿库监测技术路线
传感器 波段 波长范围/μm 空间分辨率/m 幅宽/km
GF-6
PMS
全色 0.45 ~ 0.90 2 90
蓝光 0.45 ~ 0.52 8 90
绿光 0.52 ~ 0.59 8 90
红光 0.63 ~ 0.69 8 90
近红外 0.77 ~ 0.89 8 90
Tab.1  GF-6卫星PMS传感器参数
Fig.3  尾矿库潜在分布区域提取结果
Fig.4  个旧市部分典型尾矿库提取结果及实地现场调查照片
Fig.5  个旧市尾矿库提取结果及面积统计结果
[1] 陈生水. 尾矿库安全评价存在的问题与对策[J]. 岩土工程学报, 2016, 38(10):1869-1873.
Chen S S. Problems and countermeasures of safety evaluation of tailing pond[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10):1869-1873.
[2] Islam K, Murakami S. Global-scale impact analysis of mine tailings dam failures:1915—2020[J]. Global Environmental Change, 2021, 70:102361.
doi: 10.1016/j.gloenvcha.2021.102361
[3] 王宏洋, 王旭, 陈海燕, 等. 尾矿库环境风险管控相关政策分析及建议[J]. 环境科学研究, 2023, 36(5):1052-1060.
Wang H Y, Wang X, Chen H Y, et al. Analysis and suggestions of environmental risk control strategy for tailings ponds[J]. Research of Environmental Sciences, 2023, 36(5):1052-1060.
[4] 郝利娜, 张志, 何文熹, 等. 鄂东南尾矿库高分辨率遥感图像识别因子研究[J]. 国土资源遥感, 2012, 24(3):154-158.doi:10.6046/gtzyyg.2012.03.27.
Hao L N, Zhang Z, He W X, et al. Tailings reservoir recognition factors of the highresolution remote sensing image in southeastern Hubei[J]. Remote Sensing for Land and Resources, 2012, 24(3):154-158.doi:10.6046/gtzyyg.2012.03.27.
[5] 于博文, 田淑芳, 赵永超, 等. 高分一号卫星在京津矿山遥感监测中的应用[J]. 现代地质, 2017, 31(4):843-850.
Yu B W, Tian S F, Zhao Y C, et al. Application of GF-1 satellite in remote sensing monitoring on mine exploitation in Beijing and Tianjin[J]. Geoscience, 2017, 31(4):843-850.
[6] 高永志, 初禹, 梁伟. 黑龙江省矿集区尾矿库遥感监测与分析[J]. 国土资源遥感, 2015, 27(1):160-163.doi:10.6046/gtzyyg.2015.01.25.
Gao Y Z, Chu Y, Liang W. Remote sensing monitoring and analysis of tailings ponds in the ore concentration area of Heilongjiang Pro-vince[J]. Remote Sensing for Land and Resources, 2015, 27(1):160-163.doi:10.6046/gtzyyg.2015.01.25.
[7] 曹兰杰, 吴兵, 汪金花, 等. 面向对象的高分一号铁尾矿遥感信息提取与分析[J]. 测绘与空间地理信息, 2019, 42(4):98-101.
Cao L J, Wu B, Wang J H, et al. Object-oriented information extraction and analysis of the iron tailings with GF-1 remote sensing image[J]. Geomatics and Spatial Information Technology, 2019, 42(4):98-101.
[8] 范莹琳, 娄德波, 张长青, 等. 基于面向对象的铁尾矿信息提取技术研究——以迁西地区北京二号遥感影像为例[J]. 自然资源遥感, 2021, 33(4):153-161.doi:10.6046/zrzyyg.2021027.
Fan Y L, Lou D B, Zhang C Q, et al. Information extraction technologies of iron mine tailings based on object-oriented classification:A case study of Beijing-2 remote sensing images of the Qianxi Area,Hebei Province[J]. Remote Sensing for Natural Resources, 2021, 33(4):153-161.doi:10.6046/zrzyyg.2021027.
[9] 张成业, 邢江河, 李军, 等. 基于U-Net网络和GF-6影像的尾矿库空间范围识别[J]. 自然资源遥感, 2021, 33(4):252-257.doi:10.6046/zrzyyg.2021017.
Zhang C Y, Xing J H, Li J, et al. Recognition of the spatial scopes of tailing ponds based on U-Net and GF-6 images[J]. Remote Sensing for Natural Resources, 2021, 33(4):252-257.doi:10.6046/zrzyyg.2021017.
[10] Lyu J J, Hu Y, Ren S L, et al. Extracting the tailings ponds from high spatial resolution remote sensing images by integrating a deep learning-based model[J]. Remote Sensing, 2021, 13(4):743.
doi: 10.3390/rs13040743
[11] 闫凯, 沈汀, 陈正超, 等. 基于深度学习的SSD模型尾矿库自动提取[J]. 中国科学院大学学报, 2020, 37(3):360-367.
doi: 10.7523/j.issn.2095-6134.2020.03.009
Yan K, Shen T, Chen Z C, et al. Automatic extraction of tailing pond based on SSD of deep learning[J]. Journal of University of Chinese Academy of Sciences, 2020, 37(3):360-367.
doi: 10.7523/j.issn.2095-6134.2020.03.009
[12] 李庆, 陈俊杰, 李庆亭, 等. 基于SSD模型的京津冀地区尾矿库检测[J]. 遥感技术与应用, 2021, 36(2):293-303.
Li Q, Chen J J, Li Q T, et al. Detection of tailings pond in Beijing-Tianjin-Hebei region based on SSD model[J]. Remote Sensing Technology and Application, 2021, 36(2):293-303.
[13] Li Q T, Chen Z C, Zhang B, et al. Detection of tailings dams using high-resolution satellite imagery and a single shot multibox detector in the Jing-Jin-Ji region,China[J]. Remote Sensing, 2020, 12(16):2626.
doi: 10.3390/rs12162626
[14] Ma B D, Chen Y T, Zhang S, et al. Remote sensing extraction method of tailings ponds in ultra-low-grade iron mining area based on spectral characteristics and texture entropy[J]. Entropy, 2018, 20(5):345.
doi: 10.3390/e20050345
[15] Hao L N, Zhang Z, Yang X X. Mine tailing extraction indexes and model using remote-sensing images in southeast Hubei Province[J]. Environmental Earth Sciences, 2019, 78(15):493.
doi: 10.1007/s12665-019-8439-1
[16] 张继贤, 顾海燕, 鲁学军, 等. 地理国情大数据研究框架[J]. 遥感学报, 2016, 20(5):1017-1026.
Zhang J X, Gu H Y, Lu X J, et al. Research framework of geographical conditions and big data[J]. Journal of Remote Sensing, 2016, 20(5):1017-1026.
[17] Liao C, Brown D, Fei D, et al. Big data-enabled social sensing in spatial analysis:Potentials and pitfalls[J]. Transactions in GIS, 2018, 22(6):1351-1371.
doi: 10.1111/tgis.v22.6
[18] Liu X P, He J L, Yao Y, et al. Classifying urban land use by integrating remote sensing and social media data[J]. International Journal of Geographical Information Science, 2017, 31(8):1675-1696.
doi: 10.1080/13658816.2017.1324976
[19] 赵云涵, 陈刚强, 陈广亮, 等. 耦合多源大数据提取城中村建筑物——以广州市天河区为例[J]. 地理与地理信息科学, 2018, 34(5):7-13,1.
Zhao Y H, Chen G Q, Chen G L, et al. Integrating multi-source big data to extract buildings of urban villages:A case study of Tianhe District,Guangzhou[J]. Geography and Geo-Information Science, 2018, 34(5):7-13,1.
[20] 李闽, 杨耀红. 个旧市矿产资源开发环境代价核算[J]. 中国人口·资源与环境, 2013, 23(s2):396-399.
Li M, Yang Y H. A preliminary discussion of environment cost caused by mineral resource exploitation in Gejiu City[J]. China Population,Resources and Environment, 2013, 23(s2):396-399.
[21] Zheng B B, Wang J H, Feng T T, et al. Risk evolution study of tailings dam failures disaster based on DEMATEL-MISM[J]. Frontiers in Earth Science, 2022, 10:906486.
doi: 10.3389/feart.2022.906486
[22] Fennell J, Arciszewski T J. Current knowledge of seepage from oil sands tailings ponds and its environmental influence in northeastern Alberta[J]. Science of the Total Environment, 2019, 686:968-985.
doi: 10.1016/j.scitotenv.2019.05.407
[1] 蒋瑞瑞, 甘甫平, 郭艺, 闫柏琨. 土壤水分多源卫星遥感联合反演研究进展[J]. 自然资源遥感, 2024, 36(1): 1-13.
[2] 蔡建澳, 明冬萍, 赵文祎, 凌晓, 张雨, 张星星. 基于综合遥感的察隅县滑坡隐患识别及致灾机理分析[J]. 自然资源遥感, 2024, 36(1): 128-136.
[3] 宋英旭, 邹昱嘉, 叶润青, 贺志霞, 王宁涛. 利用GEE云平台实现三峡库区滑坡危险性动态分析[J]. 自然资源遥感, 2024, 36(1): 154-161.
[4] 陆妍玲, 黄娅琦, 周俊芬, 王杰, 韦晶闪. 基于夜光遥感数据的广西县域农村多维脱贫分析[J]. 自然资源遥感, 2024, 36(1): 169-178.
[5] 李世杰, 冯徽徽, 王珍, 杨卓琳, 王姝. 2010—2019年间洞庭湖流域生态环境状况时空动态特征及影响因素[J]. 自然资源遥感, 2024, 36(1): 179-188.
[6] 周小迦. 丘陵地带耕地撂荒遥感监测应用研究[J]. 自然资源遥感, 2024, 36(1): 235-241.
[7] 刘宇佳, 谢诗哲, 杜阳, 严瑾, 南燕云, 温中凯. 结合空间语义注意力的二段式遥感图像修复网络[J]. 自然资源遥感, 2024, 36(1): 58-66.
[8] 卢献健, 张焕铃, 晏红波, 黎振宝, 郭子扬. 协同Sentinel-1/2多特征优选的甘蔗提取方法[J]. 自然资源遥感, 2024, 36(1): 86-94.
[9] 王煜淼, 李胜, 东春宇, 杨刚. 多特征参数支持的红树林遥感信息提取——以广东省为例[J]. 自然资源遥感, 2024, 36(1): 95-102.
[10] 王岩, 汪利诚, 武晋雯. 日平均气温遥感估算方法综述[J]. 自然资源遥感, 2023, 35(4): 1-8.
[11] 田钊, 梁艾琳. 居民碳排放的遥感监测与分析[J]. 自然资源遥感, 2023, 35(4): 43-52.
[12] 余绍淮, 徐乔, 余飞. 联合光学和SAR遥感影像的山区公路滑坡易发性评价方法[J]. 自然资源遥感, 2023, 35(4): 81-89.
[13] 邓丁柱. 基于深度学习的多源卫星遥感影像云检测方法[J]. 自然资源遥感, 2023, 35(4): 9-16.
[14] 陈笛, 彭秋志, 黄培依, 刘雅璇. 采用注意力机制与改进YOLOv5的光伏用地检测[J]. 自然资源遥感, 2023, 35(4): 90-95.
[15] 殷亚秋, 王敬, 杨金中, 朱晓华, 王立威, 邢宇, 李天祺, 余洋. 海南省国家级海洋自然保护区2016—2020年人类活动影响遥感监测与评价[J]. 自然资源遥感, 2023, 35(4): 149-158.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发