Please wait a minute...
 
自然资源遥感  2025, Vol. 37 Issue (5): 73-90    DOI: 10.6046/zrzyyg.2024206
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于视觉双驱动认知的高分辨率遥感影像自学习分割方法
吴志军1(), 丛铭1(), 许妙忠2, 韩玲1, 崔建军1, 赵超英1, 席江波1, 杨成生1, 丁明涛1, 任超锋1, 顾俊凯1, 彭晓东1, 陶翊婷2
1.长安大学地测学院,西安 710064
2.武汉大学测绘遥感信息工程国家重点实验室,武汉 430072
Self-learning segmentation of high-resolution remote sensing images based on visual dual-drive cognition
WU Zhijun1(), CONG Ming1(), XU Miaozhong2, HAN Ling1, CUI Jianjun1, ZHAO Chaoying1, XI Jiangbo1, YANG Chengsheng1, DING Mingtao1, REN Chaofeng1, GU Junkai1, PENG Xiaodong1, TAO Yiting2
1. College of Geological Engineering and Geomatics,Chang’an University,Xi’an 710064,China
2. State Key Laboratory of Information Engineering in Surveying,Mapping and Remote Sensing,Wuhan University,Wuhan 430072,China
全文: PDF(12990 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

针对当前高分辨率遥感影像场景复杂难以简单解析,且变化多样难以从样本库获取准确参考的问题,文章参照视觉的双驱动认知机理,提出了一种自学习的高分辨率遥感影像分割方法。该方法在借鉴视觉感知原理的基础上,通过非监督的自适应分析解读场景中的典型地物,并结合神经网络实现典型地物的自学习辨识,最后结合非监督分析与神经网络学习实施分割结果的自检校修正。采用包含复杂地面场景的真实高分辨率遥感影像数据,对比2种目前流行的深度神经网络分割方法Mask R-CNN (mask region-based convolutional neural network,MR)和ScalableViT (scalable vision Transformers,SViT)进行实验,实验结果表明所提方法能保持稳健、可靠的分割精度,在地物认知、泛化性能和抗干扰能力方面具有显著优势,是一种性价比高、实用性强的方法。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴志军
丛铭
许妙忠
韩玲
崔建军
赵超英
席江波
杨成生
丁明涛
任超锋
顾俊凯
彭晓东
陶翊婷
关键词 视觉仿生高分辨率遥感影像分割非监督分析深度学习神经网络自学习方法    
Abstract

The current high-resolution remote sensing images involve complex scenes that are difficult to analyze. Meanwhile,owing to the diverse scenes,there is a lack of accurate reference obtained from the sample database. Therefore,this paper proposed a self-learning segmentation method for high-resolution remote sensing images,with reference to the visual dual-drive cognition mechanism. Based on the principle of visual perception,this method interpreted the typical ground objects in the scene through unsupervised adaptive analysis. In addition,it achieved self-learning identification of typical ground objects by integrating a neural network. Finally,the segmentation results were self-checked and corrected by combining unsupervised analysis and neural network learning. Using real high-resolution remote sensing image data containing complex ground scenes,the comparative experiments were conducted between the proposed method and two popular deep neural network segmentation methods:mask region-based convolutional neural network (Mask R-CNN) and scalable vision transformer (ScalableViT). The results showed that the proposed method can maintain robust and reliable segmentation accuracy,and outperformed others in terms of ground object cognition,generalization performance,and anti-interference ability. As such,it proved to be a cost-effective and practical approach.

Key wordsbionic visual    high-resolution remote sensing    image segmentation    unsupervised analysis    deep learning neural network    self-learning method
收稿日期: 2024-06-12      出版日期: 2025-10-28
ZTFLH:  TP753  
  P237  
基金资助:陕西省教育厅服务地方专项计划项目“工程外部空间遥感信息获取、建模、解译与信息智慧管控关键技术研究”(23JE002);国家科技部的国家重点研发计划项目“陆路交通基础设施智能化设计共性关键技术”课题一“北斗定位与空天地集成高精度智能测绘技术”(2021YFB2600401);国家自然科学基金项目“基于动态宽度与深度学习的多源异构数据下高山峡谷区链生地质灾害智能识别研究”(42371356);国家重点研发计划子课题“重大崩滑隐患多源精准识别与InSAR精细监测技术及应用示范”(2021YFC3000404-01);陕西省林业科技创新计划专项“基于高光谱遥感深度学习的林地增损监测技术研究”(SXLK2021-0225);国家自然科学基金项目“基于多源异构时空数据融合的黄土区滑坡智能识别研究”(42171348)
通讯作者: 丛 铭(1987-),男,博士,主要从事遥感影像分析领域的研究。Email:kul_chd@qq.com
作者简介: 吴志军(2001-),男,硕士研究生,主要从事图像处理方面的研究。Email:3408419816@qq.com
引用本文:   
吴志军, 丛铭, 许妙忠, 韩玲, 崔建军, 赵超英, 席江波, 杨成生, 丁明涛, 任超锋, 顾俊凯, 彭晓东, 陶翊婷. 基于视觉双驱动认知的高分辨率遥感影像自学习分割方法[J]. 自然资源遥感, 2025, 37(5): 73-90.
WU Zhijun, CONG Ming, XU Miaozhong, HAN Ling, CUI Jianjun, ZHAO Chaoying, XI Jiangbo, YANG Chengsheng, DING Mingtao, REN Chaofeng, GU Junkai, PENG Xiaodong, TAO Yiting. Self-learning segmentation of high-resolution remote sensing images based on visual dual-drive cognition. Remote Sensing for Natural Resources, 2025, 37(5): 73-90.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2024206      或      https://www.gtzyyg.com/CN/Y2025/V37/I5/73
Fig.1  模拟视觉双驱动认知的自适应分割思路
Fig.2  独立地物的多尺度表征示例图
Fig.3  超像素聚类形成同源可靠样本示例图
Fig.4  特征挖掘结构
Fig.5  自注意权重分配结构
Fig.6  多尺度差分编码结构
Fig.7  多重感受野解码结构
Fig.8  整体网络结构
Fig.9  错误修复思路
Fig.10  模拟视觉双驱动认知的自适应分割流程
Fig.11  实验一分割结果
精度
指标
MR SViT 本文方法
整张影像 小区域1 小区域2 小区域3 整张影像 小区域1 小区域2 小区域3 整张影像 小区域1 小区域2 小区域3
OA 0.861 0.858 0.867 0.950 0.961 0.966 0.882 0.883 0.890 0.715 0.648 0.728
K 0.742 0.734 0.752 0.484 0.508 0.543 0.669 0.664 0.675 0.542 0.445 0.556
QD 0.052 0.048 0.053 0.026 0.017 0.016 0.064 0.058 0.051 0.172 0.098 0.172
AD 0.087 0.094 0.079 0.024 0.022 0.018 0.054 0.059 0.059 0.113 0.254 0.100
Tab.1  实验一的分割精度
精度
指标
MR SViT 本文方法
整张影像 小区域1 小区域2 小区域3 整张影像 小区域1 小区域2 小区域3 整张影像 小区域1 小区域2 小区域3
OA 0.799 0.918 0.642 0.741 0.767 0.896 0.616 0.652 0.815 0.922 0.645 0.761
K 0.690 0.574 0.513 0.649 0.639 0.522 0.485 0.535 0.678 0.587 0.523 0.675
QD 0.086 0.040 0.252 0.156 0.084 0.060 0.271 0.191 0.07 0.059 0.250 0.090
AD 0.119 0.032 0.106 0.102 0.149 0.043 0.113 0.157 0.111 0.029 0.105 0.149
Tab.2  实验二的分割精度
Fig.12  实验二分割结果
Fig.13  实验三分割结果
精度
指标
MR SViT 本文方法
整张影像 小区域1 小区域2 小区域3 整张影像 小区域1 小区域2 小区域3 整张影像 小区域1 小区域2 小区域3
OA 0.861 0.939 0.819 0.852 0.856 0.934 0.829 0.824 0.876 0.951 0.850 0.893
K 0.787 0.902 0.669 0.716 0.782 0.896 0.691 0.685 0.810 0.920 0.727 0.799
QD 0.053 0.054 0.109 0.133 0.058 0.054 0.117 0.161 0.056 0.027 0.088 0.088
AD 0.086 0.007 0.072 0.015 0.086 0.012 0.054 0.015 0.068 0.022 0.062 0.019
Tab.3  实验三的分割精度
精度
指标
MR SViT 本文方法
整张影像 小区域1 小区域2 小区域3 整张影像 小区域1 小区域2 小区域3 整张影像 小区域1 小区域2 小区域3
OA 0.774 0.709 0.863 0.779 0.774 0.738 0.787 0.781 0.803 0.765 0.851 0.775
K 0.705 0.522 0.796 0.617 0.697 0.538 0.686 0.607 0.735 0.568 0.779 0.599
QD 0.135 0.241 0.05 0.133 0.159 0.216 0.160 0.156 0.110 0.157 0.082 0.149
AD 0.091 0.050 0.087 0.088 0.067 0.046 0.053 0.063 0.087 0.078 0.067 0.076
Tab.4  实验四的分割精度
Fig.14  实验四分割结果
精度
指标
MR SViT 本文方法
整张影像 小区域1 小区域2 小区域3 整张影像 小区域1 小区域2 小区域3 整张影像 小区域1 小区域2 小区域3
OA 0.800 0.670 0.686 0.521 0.792 0.644 0.750 0.515 0.816 0.677 0.758 0.533
K 0.713 0.528 0.548 0.299 0.703 0.502 0.629 0.309 0.719 0.530 0.631 0.301
QD 0.108 0.273 0.162 0.385 0.131 0.304 0.082 0.405 0.113 0.264 0.082 0.319
AD 0.092 0.057 0.152 0.094 0.077 0.052 0.168 0.080 0.070 0.039 0.151 0.078
Tab.5  实验五的分割精度
Fig.15  实验五分割结果
精度
指标
MR SViT 本文方法
整张影像 小区域1 小区域2 小区域3 整张影像 小区域1 小区域2 小区域3 整张影像 小区域1 小区域2 小区域3
OA 0.822 0.788 0.825 0.904 0.854 0.820 0.861 0.909 0.855 0.821 0.863 0.919
K 0.623 0.649 0.682 0.655 0.665 0.686 0.736 0.617 0.673 0.694 0.736 0.647
QD 0.065 0.103 0.065 0.045 0.074 0.077 0.040 0.050 0.072 0.075 0.052 0.034
AD 0.113 0.109 0.110 0.051 0.072 0.103 0.097 0.041 0.071 0.104 0.087 0.047
Tab.6  实验六的分割精度
Fig.16  实验六分割结果
Fig.17  3种方法的精度对比图
[1] Pan X, Zhang C, Xu J, et al. Simplified object-based deep neural network for very high resolution remote sensing image classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 181:218-237.
[2] 程结海, 黄中意, 王建如, 等. 高空间分辨率遥感影像最优分割结果自动确定方法[J]. 测绘学报, 2022, 51(5):658-667.
doi: 10.11947/j.AGCS.2022.20210423
Cheng J H, Huang Z Y, Wang J R, et al. The automatic determination method of the optimal segmentation result of high-spatial resolution remote sensing image[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5):658-667.
doi: 10.11947/j.AGCS.2022.20210423
[3] 吴强强, 王帅, 王彪, 等. 空间信息感知语义分割模型的高分辨率遥感影像道路提取[J]. 遥感学报, 2022, 26(9):1872-1885.
Wu Q Q, Wang S, Wang B, et al. Road extraction method of high-resolution remote sensing image on the basis of the spatial information perception semantic segmentation model[J]. National Remote Sensing Bulletin, 2022, 26(9):1872-1885.
[4] Liu Y, Li E, Wang S, et al. Superpixel segmentation of high-resolution remote sensing image based on feature reconstruction method by salient edges[J]. Journal of Applied Remote Sensing, 2023, 17(2):026516.
[5] 邵振峰, 孙悦鸣, 席江波, 等. 智能优化学习的高空间分辨率遥感影像语义分割[J]. 武汉大学学报(信息科学版), 2022, 47(2):234-241.
Shao Z F, Sun Y M, Xi J B, et al. Intelligent optimization learning for semantic segmentation of high spatial resolution remote sensing images[J]. Geomatics and Information Science of Wuhan University, 2022, 47(2):234-241.
[6] 石雪. 基于层次化混合模型的高分辨率遥感影像分割方法研究[J]. 测绘学报, 2023, 52(1):168.
doi: 10.11947/j.AGCS.2023.20210147
Shi X. Hierarchical mixture model based high-resolution remote sensing image segmentation method[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(1):168.
doi: 10.11947/j.AGCS.2023.20210147
[7] Cao Y, Huang X. A coarse-to-fine weakly supervised learning method for green plastic cover segmentation using high-resolution remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 188:157-176.
[8] Su Y, Cheng J, Bai H, et al. Semantic segmentation of very-high-resolution remote sensing images via deep multi-feature learning[J]. Remote Sensing, 2022, 14(3):533.
[9] Ding C, Weng L, Xia M, et al. Non-local feature search network for building and road segmentation of remote sensing image[J]. ISPRS International Journal of Geo-Information, 2021, 10(4):245.
[10] Ju H, Bi F, Bian M, et al. Multiscale feature fusion network for automatic port segmentation from remote sensing images[J]. Journal of Applied Remote Sensing, 2022, 16(4):044506.
[11] 周荣荣, 刘扬, 周一凡, 等. 基于语义分割的遥感影像建筑物自动提取方法[J]. 河南科学, 2023, 41(4):612-618.
Zhou R R, Liu Y, Zhou Y F, et al. Automatic building extraction from remote sensing images based on semantic segmentation[J]. Henan Science, 2023, 41(4):612-618.
[12] 刘勇, 郝新宇, 赵晨, 等. 结合分类和语义分割的遥感影像洪涝灾害检测方法[J]. 黑龙江大学工程学报, 2023, 14(1):76-82.
Liu Y, Hao X Y, Zhao C, et al. Remote sensing image flood disaster detection method based on classification and semantic segmentation[J]. Journal of Engineering of Heilongjiang University, 2023, 14(1):76-82.
[13] 王振华, 张鑫月, 刘智翔, 等. 遥感地物分割的改进格子玻尔兹曼并行模型[J]. 遥感信息, 2021, 36(4):1-6.
Wang Z H, Zhang X Y, Liu Z X, et al. Improved lattice Boltzmann parallel model for remote sensing object segmentation[J]. Remote Sensing Information, 2021, 36(4):1-6.
[14] 刘思言, 李玲, 特日根, 等. 基于直方图区域生长的遥感图像阈值分割算法[J]. 测绘通报, 2021(2):25-29.
doi: 10.13474/j.cnki.11-2246.2021.0037
Liu S Y, Li L, Te R G, et al. Threshold segmentation algorithm based on histogram region growing for remote sensing images[J]. Bulletin of Surveying and Mapping, 2021(2):25-29.
doi: 10.13474/j.cnki.11-2246.2021.0037
[15] 高瑞璞, 李礼. 使用超像素编码的交互式影像语义分割方法[J]. 测绘地理信息, 2022, 47(s1):148-152.
Gao R P, Li L. A method for interactive image semantic segmentation using superpixel encoding[J]. Journal of Geomatics, 2022, 47(s1):148-152.
[16] 张汉中. 基于小波域三重MRF分割算法的遥感图像分割分析[J]. 北京测绘, 2021, 35(7):866-869.
Zhang H Z. Analysis of remote sensing image segmentation based on wavelet domain triple MRF segmentation algorithm[J]. Beijing Surveying and Mapping, 2021, 35(7):866-869.
[17] Song Y, Qu J. Real-time segmentation of remote sensing images with a combination of clustering and Bayesian approaches[J]. Journal of Real-Time Image Processing, 2021, 18(5):1541-1554.
[18] 苏腾飞. 深度卷积语义分割网络在农田遥感影像分类中的对比研究——以河套灌区为例[J]. 自然资源遥感, 2024, 36(4):210-217.doi:10.6046/zrzyyg.2023150.
Su T F. A comparative study on semantic segmentation-orientated deep convolutional networks for remote sensing image-based farmland classification:A case study of the Hetao irrigation district[J]. Remote Sensing for Natural Resources, 2024, 36(4):210-217.doi:10.6046/zrzyyg.2023150.
[19] 张瑞瑞, 夏浪, 陈立平, 等. 深度语义分割网络无人机遥感松材线虫病变色木识别[J]. 自然资源遥感, 2024, 36(3):216-224.doi:10.6046/zrzyyg.2023094.
Zhang R R, Xia L, Chen L P, et al. Identifying discolored trees inflected with pine wilt disease using DSSN-based UAV remote sensing[J]. Remote Sensing for Natural Resources, 2024, 36(3):216-224.doi:10.6046/zrzyyg.2023094.
[20] 杨军, 于茜子. 结合空洞卷积的FuseNet变体网络高分辨率遥感影像语义分割[J]. 武汉大学学报(信息科学版), 2022, 47(7):1071-1080.
Yang J, Yu X Z. Semantic segmentation of high-resolution remote sensing images based on improved FuseNet combined with atrous convolution[J]. Geomatics and Information Science of Wuhan University, 2022, 47(7):1071-1080.
[21] Xi J B, Ersoy O K, Cong M, et al. Wide and deep Fourier neural network for hyperspectral remote sensing image classification[J]. Remote Sensing, 2022, 14(12):2931-2931.
[22] 潘建平, 李鑫, 孙博文, 等. 基于注意力密集连接金字塔网络的新增建设用地变化检测[J]. 测绘通报, 2022(3):41-46,59.
doi: 10.13474/j.cnki.11-2246.2022.0075
Pan J P, Li X, Sun B W, et al. Detection of new construction land change based on attention intensive connection pyramid network[J]. Bulletin of Surveying and Mapping, 2022(3):41-46,59.
doi: 10.13474/j.cnki.11-2246.2022.0075
[23] 孙汉淇, 潘晨, 何灵敏, 等. 多模态特征融合的遥感图像语义分割网络[J]. 计算机工程与应用, 2022, 58(24):256-264.
doi: 10.3778/j.issn.1002-8331.2207-0010
Sun H Q, Pan C, He L M, et al. Remote sensing image semantic segmentation network based on multimodal feature fusion[J]. Computer Engineering and Applications, 2022, 58(24):256-264.
doi: 10.3778/j.issn.1002-8331.2207-0010
[24] Sun L, Cheng S, Zheng Y, et al. SPANet:Successive pooling attention network for semantic segmentation of remote sensing images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15:4045-4057.
[25] Cong M, Xi J, Han L, et al. Multi-resolution classification network for high-resolution UAV remote sensing images[J]. Geocarto International, 2022, 37(11):3116-3140.
[26] 刘晨晨, 葛小三, 武永斌, 等. 基于混合注意力机制和Deeplabv3+的遥感影像建筑物提取方法[J]. 自然资源遥感, 2025, 37(1):31-37.doi:10.6046/zrzyyg.2023295.
Liu C C, Ge X S, Wu Y B, et al. A method for information extraction of buildings from remote sensing images based on hybrid attention mechanism and Deeplabv3+[J]. Remote Sensing for Natural Resources, 2025, 37(1):31-37.doi:10.6046/zrzyyg.2023295.
[27] 曲海成, 梁旭. 融合混合注意力机制与多尺度特征增强的高分影像建筑物提取[J]. 自然资源遥感, 2024, 36(4):107-116.doi:10.6046/zrzyyg.2023146.
Qu H C, Liang X. Building extraction from high-resolution images using a hybrid attention mechanism combined with multi-scale feature enhancement[J]. Remote Sensing for Natural Resources, 2024, 36(4):107-116.doi:10.6046/zrzyyg.2023146.
[28] 冯炜明, 张新长, 孙颖, 等. 融合Transformer结构的高分辨率遥感影像变化检测网络[J]. 测绘通报, 2022(8):36-40,92.
doi: 10.13474/j.cnki.11-2246.2022.0229
Feng W M, Zhang X C, Sun Y, et al. High-resolution remote sens-ing image change detection network with Transformer structure[J]. Bulletin of Surveying and Mapping, 2022(8):36-40,92.
[29] He Q B, Sun X, Diao W H, et al. Multimodal remote sensing image segmentation with intuition-inspired hypergraph modeling[J]. IEEE Transactions on Image Processing, 2023, 32:1474-1487.
[30] 马妍, 古丽米拉·克孜尔别克. 图像语义分割方法在高分辨率遥感影像解译中的研究综述[J]. 计算机科学与探索, 2023, 17(7):1526-1548.
doi: 10.3778/j.issn.1673-9418.2211015
Ma Y, Gulimila K. Research review of image semantic segmentation method in high-resolution remote sensing image interpretation[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(7):1526-1548.
[31] 潘俊杰, 慎利, 鄢薪, 等. 一种基于对抗学习的高分辨率遥感影像语义分割无监督域自适应方法[J]. 自然资源遥感, 2024, 36(4):149-157.doi:10.6046/zrzyyg.2023169.
Pan J J, Shen L, Yan X, et al. An adversarial learning-based unsupervised domain adaptation method for semantic segmentation of high-resolution remote sensing images[J]. Remote Sensing for Natural Resources, 2024, 36(4):149-157.doi:10.6046/zrzyyg.2023169.
[32] Katsuki F, Constantinidis C. Bottom-up and top-down attention:Different processes and overlapping neural systems[J]. The Neuroscientist:A Review Journal Bringing Neurobiology,Neurology and Psychiatry, 2014, 20(5):509-521.
[33] Katsumi Y, Putcha D, Eckbo R, et al. Anterior dorsal attention network tau drives visual attention deficits in posterior cortical atrophy[J]. Brain, 2023, 146(1):295-306.
[34] Goferman S, Zelnik-Manor L, Tal A. Context-aware saliency detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(10):1915-1926.
pmid: 22201056
[35] 郑少佳, 邱崧, 李庆利, 等. 傅里叶变换通道注意力网络的胆管癌高光谱图像分割[J]. 中国图象图形学报, 2021, 26(8):1836-1846.
Zheng S J, Qiu S, Li Q L, et al. Fourier transform channel attention network for cholangiocarcinoma hyperspectral image segmentation[J]. Journal of Image and Graphics, 2021, 26(8):1836-1846.
[36] Zhou Z, Zhou Y, Wang D, et al. Self-attention feature fusion network for semantic segmentation[J]. Neurocomputing, 2021, 453:50-59.
[37] 杨开富. 前端视觉通路信息加工的计算模型及应用研究[D]. 成都: 电子科技大学, 2016.
Yang K F. Computational models and applications of the early stages of biological visual system[D]. Chengdu: University of Electronic Science and Technology of China, 2016.
[38] Marks W B, Dobelle W H, Macnichol Jr E F. Visual pigments of single primate cones[J]. Science, 1964, 143(3611):1181-1183.
pmid: 14108303
[39] Li C Y, Pei X, Zhow Y X, et al. Role of the extensive area outside the x-cell receptive field in brightness information transmission[J]. Vision Research, 1991, 31(9):1529-1540.
pmid: 1949622
[40] Grigorescu C, Petkov N, Westenberg M A. Contour detection based on nonclassical receptive field inhibition[J]. IEEE Transactions on Image Processing, 2003, 12(7):729-739.
doi: 10.1109/TIP.2003.814250 pmid: 18237948
[41] 宋晓风. 数字脉冲压缩技术在雷达中的应用[J]. 现代电子技术, 2009, 32(12):118-120.
Song X F. Application of digital pulse compression technique in Radar[J]. Modern Electronics Technique, 2009, 32(12):118-120.
[42] Michelson A A. Studies in optics[M]. Mineola,NY: Dover Publications, 1995.
[43] Damera-Venkata N, Kite T D, Geisler W S, et al. Image quality assessment based on a degradation model[J]. IEEE Transactions on Image Processing, 2000, 9(4):636-650.
doi: 10.1109/83.841940 pmid: 18255436
[44] Cong M, Cui J, Peng X, et al. Preliminary analytical method for unsupervised remote sensing image classification based on visual perception and a force field[J]. Geocarto International, 2018, 33(12):1350-1366.
[45] Hubel D H, Wiesel T N. Receptive fields of single neurones in the cat’s striate cortex[J]. The Journal of Physiology, 1959, 148(3):574-591.
[46] Hubel D H, Wiesel T N. Receptive fields and functional architecture of monkey striate cortex[J]. The Journal of Physiology, 1968, 195(1):215-243.
[47] Hubel D H, Wiesel T N. The period of susceptibility to the physiological effects of unilateral eye closure in kittens[J]. The Journal of Physiology, 1970, 206(2):419-436.
[48] Hubel D H, Wiesel T N. Ferrier lecture. Functional architecture of macaque monkey visual cortex[J]. Proceedings of the Royal Society of London Series B,Biological Sciences, 1977, 198(1130):1-59.
[49] 徐安林, 杜丹, 王海红, 等. 结合层次化搜索与视觉残差网络的光学舰船目标检测方法[J]. 光电工程, 2021, 48(4):39-46.
Xu A L, Du D, Wang H H, et al. Optical ship target detection method combining hierarchical search and visual residual network[J]. Opto-Electronic Engineering, 2021, 48(4):39-46.
[50] 许妙忠, 丛铭, 万丽娟, 等. 视觉感受与Markov随机场相结合的高分辨率遥感影像分割法[J]. 测绘学报, 2015, 44(2):198-205,213.
doi: 10.11947/j.AGCS.2015.20130453
Xu M Z, Cong M, Wan L J, et al. A methodology of image segmentation for high resolution remote sensing image based on visual system and Markov random field[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(2):198-205,213.
doi: 10.11947/j.AGCS.2015.20130453
[51] Zheng R, Zhong Y, Yan S, et al. MsVRL:Self-supervised multiscale visual representation learning via cross-level consistency for medical image segmentation[J]. IEEE Transactions on Medical Imaging, 2023, 42(1):91-102.
[52] Ibbotson M, Krekelberg B. Visual perception and saccadic eye movements[J]. Current Opinion in Neurobiology, 2011, 21(4):553-558.
doi: 10.1016/j.conb.2011.05.012 pmid: 21646014
[53] Stewart E E M, Valsecchi M, Schütz A C. A review of interactions between peripheral and foveal vision[J]. Journal of Vision, 2020, 20(12):2.
doi: 10.1167/jov.20.12.2 pmid: 33141171
[54] Rucci M, Iovin R, Poletti M, et al. Miniature eye movements enhance fine spatial detail[J]. Nature, 2007, 447(7146):852-855.
[55] McCamy M B, Otero-Millan J, Macknik S L, et al. Microsaccadic efficacy and contribution to foveal and peripheral vision[J]. The Journal of Nearoscience, 2012, 32(27):9194-9204.
[56] Martinez-Conde S, Otero-Millan J, Macknik S L. The impact of microsaccades on vision:Towards a unified theory of saccadic function[J]. Nature Reviews Neuroscience, 2013, 14(2):83-96.
doi: 10.1038/nrn3405 pmid: 23329159
[57] 杜方家, 徐杨, 李长军. 改进的CIELAB均匀颜色空间[J]. 光学学报, 2022, 42(1):292-300.
Du F J, Xu Y, Li C J. Modified CIELAB uniform color space[J]. Acta Optica Sinica, 2022, 42(1):292-300.
[58] 陈少军, 张莉华, 许新德, 等. 微胶囊叶黄素吸收光谱及色调的影响因素研究[J]. 中国食品添加剂, 2013, 24(4):100-102.
Chen S J, Zhang L H, Xu X D, et al. Studies on factors influence UV-absorbance and color value of microencapsulated lutein[J]. China Food Additives, 2013, 24(4):100-102.
[59] CIE. CIE 217:2016 Recommended method for evaluating the performance of colour-difference formulae[S]. Vienna:CIE, 2016.
[60] Chen Q, Wu Q, Wang J, et al. MixFormer:Mixing features across windows and dimensions[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).June 18-24,2022,New Orleans,LA,USA.IEEE,2022:5239-5249.
[61] Yang R, Ma H L, Wu J, et al. ScalableViT:Rethinking the context-oriented generalization of vision Transformer[C]// Computer Vision-ECCV 2022 Proceedings. Cham: Springer Nature Switzerland,2022:480-496.
[62] 李世琦, 姚国清. 基于CNN与SETR的特征融合滑坡体检测[J]. 自然资源遥感, 2024, 36(4):158-164.doi:10.6046/zrzyyg.2023117.
Li S Q, Yao G Q. A landslide detection method using CNN- and SETR-based feature fusion[J]. Remote Sensing for Natural Resources, 2024, 36(4):158-164.doi:10.6046/zrzyyg.2023117.
[63] 李婉悦, 娄德波, 王成辉, 等. 基于改进U-Net网络的花岗伟晶岩信息提取方法[J]. 自然资源遥感, 2024, 36(2):89-96.doi:10.6046/zrzyyg.2022500.
Li W Y, Lou D B, Wang C H, et al. A granitic pegmatite information extraction method based on improved U-Net[J]. Remote Sensing for Natural Resources, 2024, 36(2):89-96.doi:10.6046/zrzyyg.2022500.
[64] 陈佳雪, 肖东升, 陈虹宇. 一种边界引导与跨尺度信息交互网络用于遥感影像水体提取[J]. 自然资源遥感, 2025, 37(1):15-23.doi:10.6046/zrzyyg.2023230.
Chen J X, Xiao D S, Chen H Y. A boundary guidance and cross-scale information interaction network for water body extraction from remote sensing images[J]. Remote Sensing for Natural Resources, 2025, 37(1):15-23.doi:10.6046/zrzyyg.2023230.
[65] 姚群力, 胡显, 雷宏. 基于多尺度卷积神经网络的遥感目标检测研究[J]. 光学学报, 2019, 39(11):346-353.
Yao Q L, Hu X, Lei H. Object detection in remote sensing images using multiscale convolutional neural networks[J]. Acta Optica Sinica, 2019, 39(11):346-353.
[66] 雷大江, 杜加浩, 张莉萍, 等. 联合多流融合和多尺度学习的卷积神经网络遥感图像融合方法[J]. 电子与信息学报, 2022, 44(1):237-244.
Lei D J, Du J H, Zhang L P, et al. Multi-stream architecture and multi-scale convolutional neural network for remote sensing image fusion[J]. Journal of Electronics & Information Technology, 2022, 44(1):237-244.
[67] Cong M, Cui J, Chen S, et al. Enhanced shuffle attention network based on visual working mechanism for high-resolution remote sensing image classification[J]. Geocarto International, 2022, 37(27):18731-18766.
[68] Guo M H, Lu C Z, Hou Q B, et al. SegNeXt:Rethinking convolutional attention design for semantic segmentation[J/OL]. arXiv, 2022(2022-09-18). https://arxiv.org/abs/2209.08575v1.
[69] Cong M, Xi J, Ding M, et al. Two-pathway anti-interference neural network based on the retinal perception mechanism for classification of remote sensing images from unmanned aerial vehicles[J]. Journal of Applied Remote Sensing, 2020, 14(2):026511.
[70] Sharma A K, Nandal A, Dhaka A, et al. Enhanced watershed segmentation algorithm-based modified ResNet50 model for brain tumor detection[J]. BioMed Research International, 2022, 2022:7348344.
[71] Zhao X Q, Jia H P, Pang Y W, et al. M2SNet:Multi-scale in multi-scale subtraction network for medical image segmentation[J/OL]. arXiv, 2023(2023-03-20). https://arxiv.org/abs/2303.10894.
[72] Mahmoud A, Mohamed S, El-Khoribi R, et al. Object detection using adaptive mask RCNN in optical remote sensing images[J]. International Journal of Intelligent Engineering and Systems, 2020, 13(1):65-76.
[73] Song K S. Globally convergent algorithms for estimating generalized gamma distributions in fast signal and image processing[J]. IEEE Transactions on Image Processing, 2008, 17(8):1233-1250.
[74] 白石, 唐攀攀, 苗朝, 等. 基于高分辨率遥感影像和改进U-Net模型的滑坡提取——以汶川地区为例[J]. 自然资源遥感, 2024, 36(3):96-107.doi:10.6046/zrzyyg.2023132.
Bai S, Tang P P, Miao Z, et al. Information extraction of landslides based on high-resolution remote sensing images and an improved U-Net model:A case study of Wenchuan,Sichuan[J]. Remote Sensing for Natural Resources, 2024, 36(3):96-107.doi:10.6046/zrzyyg.2023132.
[75] Pontius R G Jr, Millones M. Death to Kappa:Birth of quantity disagreement and allocation disagreement for accuracy assessment[J]. International Journal of Remote Sensing, 2011, 32(15):4407-4429.
[1] 朱娟娟, 黄亮, 朱莎莎. 面向高分辨率遥感影像建筑物提取的SD-BASNet网络[J]. 自然资源遥感, 2025, 37(5): 122-130.
[2] 曲海成, 梁旭. 融合混合注意力机制与多尺度特征增强的高分影像建筑物提取[J]. 自然资源遥感, 2024, 36(4): 107-116.
[3] 潘俊杰, 慎利, 鄢薪, 聂欣, 董宽林. 一种基于对抗学习的高分辨率遥感影像语义分割无监督域自适应方法[J]. 自然资源遥感, 2024, 36(4): 149-157.
[4] 尹滔, 宋元宝, 张伟, 袁华云. 高分辨率遥感技术在川西毛垭坝地区活动断裂研究中的应用[J]. 自然资源遥感, 2024, 36(3): 174-186.
[5] 薛白, 王懿哲, 刘书含, 岳明宇, 王艺颖, 赵世湖. 基于孪生注意力网络的高分辨率遥感影像变化检测[J]. 自然资源遥感, 2022, 34(1): 61-66.
[6] 范莹琳, 娄德波, 张长青, 魏英娟, 贾福东. 基于面向对象的铁尾矿信息提取技术研究——以迁西地区北京二号遥感影像为例[J]. 自然资源遥感, 2021, 33(4): 153-161.
[7] 胡苏李扬, 李辉, 顾延生, 黄咸雨, 张志麒, 汪迎春. 基于高分辨率遥感影像的神农架大九湖湿地土地利用类型变化及其驱动力分析——来自长时间尺度多源遥感信息的约束[J]. 国土资源遥感, 2021, 33(1): 221-230.
[8] 卫虹宇, 赵银娣, 董霁红. 基于改进RetinaNet的冷却塔目标检测[J]. 国土资源遥感, 2020, 32(4): 68-73.
[9] 吴同, 彭玲, 胡媛. 基于SU-RetinaNet的高分辨率遥感影像非正规垃圾堆检测[J]. 国土资源遥感, 2020, 32(3): 90-97.
[10] 康晋洁, 戚浩平, 杨清华, 陈华. 道路通行障碍物遥感检测与通过性评价[J]. 国土资源遥感, 2020, 32(2): 94-102.
[11] 朱士才, 翟晓彤, 王宗伟. 基于Mean Shift的大批量遥感影像分割方法[J]. 国土资源遥感, 2020, 32(1): 13-18.
[12] 娄佩卿, 陈晓雨, 王疏桐, 付波霖, 黄永怡, 唐廷元, 凌铭. 基于无人机影像的喀斯特农耕区地物识别——以桂林市为例[J]. 国土资源遥感, 2020, 32(1): 216-223.
[13] 姚丙秀, 黄亮, 许艳松. 一种结合超像素和图论的高空间分辨率遥感影像分割方法[J]. 国土资源遥感, 2019, 31(3): 72-79.
[14] 李想, 杨灿坤, 周春平, 李小娟, 张可. 高分辨率光学卫星图像目标运动信息提取研究综述[J]. 国土资源遥感, 2019, 31(3): 1-9.
[15] 翟德超, 范亚男, 周亚男. 融入边界特征的遥感影像多尺度分割[J]. 国土资源遥感, 2019, 31(3): 36-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发