Please wait a minute...
 
自然资源遥感  2025, Vol. 37 Issue (5): 91-100    DOI: 10.6046/zrzyyg.2024259
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于双重特征融合的复杂环境下滑坡检测方法
方留杨1,2,3(), 杨昌浩1, 舒东1, 杨学昆2,3, 陈兴通2,3, 贾志文1
1.昆明理工大学国土资源工程学院,昆明 650093
2.云南省交通规划设计研究院股份有限公司,昆明 650200
3.云南省数字交通重点实验室,昆明 650000
Landslide detection in complex environments based on dual feature fusion
FANG Liuyang1,2,3(), YANG Changhao1, SHU Dong1, YANG Xuekun2,3, CHEN Xingtong2,3, JIA Zhiwen1
1. Faculty of Land Resources Engineering,Kunming University of Science and Technology,Kunming 650093,China
2. Broadvision Engineering Consultants,Kunming 650200,China
3. Yunnan Key Laboratory of Digital Communications,Kunming 650000,China
全文: PDF(6315 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

我国西南地区滑坡灾害十分发育,利用遥感影像准确获取滑坡信息对于防灾减灾工作具有重要意义。复杂环境下由于遥感影像背景噪声的影响,传统的滑坡遥感检测方法易出现误识别现象。该文提出一种基于双重特征融合的复杂环境下滑坡识别网络(dual-fusion landslide detection network,DLDNet),可有效提高复杂环境下的滑坡检测精度。首先,在现有滑坡样本的基础上,使用数据增强方法模拟复杂环境下的滑坡样本;其次,采用ConvNeXt作为DLDNet的特征提取网络以提取更多复杂的滑坡特征;然后,引入使用可变形卷积改进的注意力模块聚焦滑坡信息;最后,设计了一种双重融合特征金字塔网络(dual-fusion feature pyramid network,DFPN)来充分融合不同尺度和不同感受野之间的特征信息。实验表明,DLDNet模型的边界框和分割平均精度(average precision,AP)可分别达56.9%和52.5%,与基线模型(Mask R-CNN)相比分别提高了10.4和10.7百分点,与其他滑坡检测模型相比,该模型有着更高的检测精度和更低的误判率。该方法能对复杂环境下的滑坡进行精确检测,可为滑坡灾害快速识别和应急响应提供参考。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
方留杨
杨昌浩
舒东
杨学昆
陈兴通
贾志文
关键词 遥感影像目标识别滑坡提取深度学习特征融合    
Abstract

Landslide disasters are frequent and widespread in southwestern China. The accurate identification and mapping of landslides using remote sensing imagery are of great significance for disaster prevention and mitigation. However,in complex environments,traditional remote sensing detection methods are often prone to misidentification due to background noise in the imagery. This paper proposed a dual-fusion landslide detection network (DLDNet) to improve landslide detection accuracy under challenging conditions. First,based on existing landslide samples,landslide simulation was conducted in complex environments using data augmentation techniques. Second,the ConvNeXt was adopted as the feature extraction backbone of DLDNet to capture more complex landslide features. Then,an attention module enhanced with deformable convolution was introduced to better focus on landslide-related information. Finally,a dual-fusion feature pyramid network (DFPN) was designed to thoroughly integrate feature information across different scales and receptive fields. The experimental results show that the proposed DLDNet achieved average precision (AP) scores of 56.9% for bounding box detection and 52.5% for segmentation,10.4 and 10.7 percentage points higher than those of the baseline model (Mask R-CNN). Compared with other landslide detection models,the DLDNet demonstrates higher detection accuracy and a lower false alarm rate. The method,characterized by accurate landslide detection in complex environments,can support rapid landslide identification and emergency response.

Key wordsremote sensing imagery    object detection    landslide extraction    deep learning    feature fusion
收稿日期: 2024-07-31      出版日期: 2025-10-28
ZTFLH:  TP79  
基金资助:云南省科技计划项目“高原山地公路地质灾害遥感智能解译理论与方法研究”(202301AT070262);“云南省数字交通重点实验室”(202205AG070008);云南省人才项目“高层次人才培养支持计划”(YNWR-QNBJ-2020-031)
作者简介: 方留杨(1987-),男,博士,正高级工程师,主要从事遥感数据处理、交通灾害防治技术研究与应用。Email:318647315@qq.com
引用本文:   
方留杨, 杨昌浩, 舒东, 杨学昆, 陈兴通, 贾志文. 基于双重特征融合的复杂环境下滑坡检测方法[J]. 自然资源遥感, 2025, 37(5): 91-100.
FANG Liuyang, YANG Changhao, SHU Dong, YANG Xuekun, CHEN Xingtong, JIA Zhiwen. Landslide detection in complex environments based on dual feature fusion. Remote Sensing for Natural Resources, 2025, 37(5): 91-100.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2024259      或      https://www.gtzyyg.com/CN/Y2025/V37/I5/91
Fig.1  DLDNet网络结构
Fig.2  ConvNeXt网络结构
Fig.3  改进的CBAM结构
Fig.4  DFPN结构
Fig.5  研究区位置及高程信息
Fig.6  模拟复杂环境下的滑坡样本
序号 双重
融合
CEM 边界框精度 分割精度
AP AP50 AP75 AP AP50 AP75
实验1 × × 46.5 83.2 52.3 41.8 81.4 42.5
实验2 × 48.2 86.2 52.9 42.8 81.7 43.9
实验3 48.5 86.8 54.3 43.2 81.8 44.3
Tab.1  DFPN消融实验结果
序号 ConvNeXt DFPN CBAM DCN 边界框精度 分割精度
AP AP50 AP75 AP AP50 AP75
实验1 × × × × 46.5 83.2 52.3 41.8 81.4 42.5
实验4 × × × 54.6 90.2 62.8 49.7 89.4 53.0
实验5 × × 55.8 90.7 64.9 50.5 90.1 54.5
实验6 × 56.2 91.0 65.1 51.3 90.4 55.1
实验7 56.9 91.9 65.2 52.5 91.1 56.8
Tab.2  DLDNet消融实验精度
序号 真实值 实验1 实验4 实验5 实验6 实验7
a
b
c
d
e
Tab.3  DLDNet消融试验滑坡检测结果
序号 方法 主干网络 边界框精度 分割精度
AP AP50 AP75 AP AP50 AP75
实验7 DLDNet ConvNeXt-T+改进CBAM+DFPN 56.9 91.9 65.2 52.5 91.1 56.8
实验8 Faster R-CNN ResNet101+FPN 46.8 85.8 49.1
实验9 Dynamic R-CNN ResNet101+FPN 50.3 88.6 55.5
实验10 Cascade Mask R-CNN ResNet101+FPN 50.0 86.5 55.1 44.5 83.0 45.2
实验11 RTMDet CSPNeXt-T+PAFPN 56.8 91.8 64.0 51.2 89.0 54.6
Tab.4  不同模型实验结果
序号 真实值 实验7 实验8 实验9 实验10 实验11
a
b
c
d
Tab.5  不同模型滑坡检测结果
[1] 铁永波, 葛华, 高延超, 等. 二十世纪以来西南地区地质灾害研究历程与展望[J]. 沉积与特提斯地质, 2022, 42(4):653-665.
Tie Y B, Ge H, Gao Y C, et al. The research progress and prospect of geological hazards in Southwest China since the 20th Century[J]. Sedimentary Geology and Tethyan Geology, 2022, 42(4):653-665.
[2] 蔡建澳, 明冬萍, 赵文祎, 等. 基于综合遥感的察隅县滑坡隐患识别及致灾机理分析[J]. 自然资源遥感, 2024, 36(1):128-136.doi:10.6046/zrzyyg.2023313.
Cai J A, Ming D P, Zhao W Y, et al. Integrated remote sensing-based hazard identification and disaster-causing mechanisms of landslides in Zayu County[J]. Remote Sensing for Natural Resources, 2024, 36(1):128-136.doi:10.6046/zrzyyg.2023313.
[3] 晏同珍, 杨顺安, 方云. 滑坡学[M]. 武汉: 中国地质大学出版社, 2000.
Yan T Z, Yang S A, Fang Y. Landslidologies[M]. Wuhan: China University of Geosciences Press, 2000.
[4] Fan J R, Zhang X Y, Su F H, et al. Geometrical feature analysis and disaster assessment of the Xinmo landslide based on remote sensing data[J]. Journal of Mountain Science, 2017, 14(9):1677-1688.
[5] 李强, 张景发, 罗毅, 等. 2017年“8.8”九寨沟地震滑坡自动识别与空间分布特征[J]. 遥感学报, 2019, 23(4):785-795.
Li Q, Zhang J F, Luo Y, et al. Recognition of earthquake-induced landslide and spatial distribution patterns triggered by the Jiuzhaigou earthquake in August 8,2017[J]. Journal of Remote Sensing, 2019, 23(4):785-795.
[6] Sato H P, Hasegawa H, Fujiwara S, et al. Interpretation of landslide distribution triggered by the 2005 Northern Pakistan earthquake using SPOT 5 imagery[J]. Landslides, 2007, 4(2):113-122.
[7] Lu P, Qin Y, Li Z, et al. Landslide mapping from multi-sensor data through improved change detection-based Markov random field[J]. Remote Sensing of Environment, 2019, 231:111235.
[8] 李晨辉, 郝利娜, 许强, 等. 面向对象的高分辨率遥感影像地震滑坡分层识别[J]. 自然资源遥感, 2023, 35(1):74-80.doi:10.6046/zrzyyg.2022013.
Li C H, Hao L N, Xu Q, et al. Object-oriented hierarchical identification of earthquake-induced landslides based on high-resolution remote sensing images[J]. Remote Sensing for Natural Resources, 2023, 35(1):74-80.doi:10.6046/zrzyyg.2022013.
[9] 李麒崙, 张万昌, 易亚宁. 地震滑坡信息提取方法研究——以2017年九寨沟地震为例[J]. 中国科学院大学学报, 2020, 37(1):93-102.
doi: 10.7523/j.issn.2095-6134.2020.01.011
Li Q L, Zhang W C, Yi Y N. An information extraction method of earthquake-induced landslide:A case study of the Jiuzhaigou earthquake in 2017[J]. Journal of University of Chinese Academy of Sciences, 2020, 37(1):93-102.
[10] 张雨, 明冬萍, 赵文祎, 等. 基于高分光学卫星影像的泸定地震型滑坡提取与分析[J]. 自然资源遥感, 2023, 35(1):161-170.doi:10.6046/zrzyyg.2022434.
Zhang Y, Ming D P, Zhao W Y, et al. The extraction and analysis of Luding earthquake-induced landslide based on high-resolution optical satellite images[J]. Remote Sensing for Natural Resources, 2023, 35(1):161-170.doi:10.6046/zrzyyg.2022434.
[11] Liang R, Dai K, Shi X, et al. Automated mapping of ms 7.0 Jiu-zhaigou earthquake (China) post-disaster landslides based on high-resolution UAV imagery[J]. Remote Sensing, 2021, 13(7):1330.
[12] 郭澳庆, 胡俊, 郑万基, 等. 时序InSAR滑坡形变监测与预测的N-BEATS深度学习法——以新铺滑坡为例[J]. 测绘学报, 2022, 51(10):2171-2182.
doi: 10.11947/j.AGCS.2022.20220298
Guo A Q, Hu J, Zheng W J, et al. N-BEATS deep learning method for landslide deformation monitoring and prediction based on InSAR:A case study of Xinpu landslide[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(10):2171-2182.
[13] 姜万冬, 席江波, 李振洪, 等. 模拟困难样本的Mask R-CNN滑坡分割识别[J]. 武汉大学学报(信息科学版), 2023, 48(12):1931-1942.
Jiang W D, Xi J B, Li Z H, et al. Landslide detection and segmentation using Mask R-CNN with simulated hard samples[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12):1931-1942.
[14] 白石, 唐攀攀, 苗朝, 等. 基于高分辨率遥感影像和改进U-Net模型的滑坡提取——以汶川地区为例[J]. 自然资源遥感, 2024, 36(3):96-107.doi:10.6046/zrzyyg.2023132.
Bai S, Tang P P, Miao Z, et al. Information extraction of landslides based on high-resolution remote sensing images and an improved U-Net model:A case study of Wenchuan,Sichuan[J]. Remote Sensing for Natural Resources, 2024, 36(3):96-107.doi:10.6046/zrzyyg.2023132.
[15] Cortes C, Vapnik V. Support-vector networks[J]. Machine Lear-ning, 1995, 20(3):273-297.
[16] Breiman L. Random forests[J]. Machine Learning, 2001, 45:5-32.
[17] Khelifi L, Mignotte M. Deep learning for change detection in remote sensing images:Comprehensive review and meta-analysis[J]. IEEE Access, 2020, 8:126385-126400.
[18] 刘佳, 伍宇明, 高星, 等. 基于GEE和U-net模型的同震滑坡识别方法[J]. 地球信息科学学报, 2022, 24(7):1275-1285.
doi: 10.12082/dqxxkx.2022.210704
Liu J, Wu Y M, Gao X, et al. Image recognition of co-seismic landslide based on GEE and U-net neural network[J]. Journal of Geo-Information Science, 2022, 24(7):1275-1285.
[19] 杨昭颖, 韩灵怡, 郑向向, 等. 基于卷积神经网络的遥感影像及DEM滑坡识别——以黄土滑坡为例[J]. 自然资源遥感, 2022, 34(2):224-230.doi:10.6046/zrzyyg.2021204.
Yang Z Y, Han L Y, Zheng X X, et al. Landslide identification using remote sensing images and DEM based on convolutional neural network:A case study of loess landslide[J]. Remote Sensing for Natural Resources, 2022, 34(2):224-230.doi:10.6046/zrzyyg.2021204.
[20] Yu Z, Chang R, Chen Z. Automatic detection method for loess landslides based on GEE and an improved YOLOX algorithm[J]. Remote Sensing, 2022, 14(18):4599.
[21] Yang R, Zhang F, Xia J, et al. Landslide extraction using mask R-CNN with background-enhancement method[J]. Remote Sensing, 2022, 14(9):2206.
[22] 唐小川, 涂子涵, 任绪清, 等. 一种识别植被覆盖滑坡的多模态深度神经网络模型[J]. 武汉大学学报(信息科学版), 2024, 49(9):1566-1573.
Tang X C, Tu Z H, Ren X Q, et al. A multi-modal deep neural network model for forested landslide detection[J]. Geomatics and Information Science of Wuhan University, 2024, 49(9):1566-1573.
[23] 蒋伟杰, 张春菊, 徐兵, 等. AED-Net:滑坡灾害遥感影像语义分割模型[J]. 地球信息科学学报, 2023, 25(10):2012-2025.
doi: 10.12082/dqxxkx.2023.230171
Jiang W J, Zhang C J, Xu B, et al. AED-net:Semantic segmentation model for landslide recognition from remote sensing images[J]. Journal of Geo-Information Science, 2023, 25(10):2012-2025.
[24] Ji S, Yu D, Shen C, et al. Landslide detection from an open satellite imagery and digital elevation model dataset using attention boosted convolutional neural networks[J]. Landslides, 2020, 17(6):1337-1352.
[25] He K, Gkioxari G, Dollár P, et al. Mask R-CNN[C]//2017 IEEE International Conference on Computer Vision (ICCV). IEEE, 2017:2980-2988.
[26] Woo S, Park J, Lee J Y, et al. CBAM:Convolutional block attention module[M]//Lecture Notes in Computer Science. Cham: Springer International Publishing,2018:3-19.
[27] Liu Z, Mao H, Wu C Y, et al. A ConvNet for the 2020s[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2022:11966-11976.
[28] 付国栋, 黄进, 杨涛, 等. 改进CBAM的轻量级注意力模型[J]. 计算机工程与应用, 2021, 57(20):150-156.
doi: 10.3778/j.issn.1002-8331.2101-0369
Fu G D, Huang J, Yang T, et al. Improved lightweight attention model based on CBAM[J]. Computer Engineering and Applications, 2021, 57(20):150-156.
doi: 10.3778/j.issn.1002-8331.2101-0369
[29] Lin T Y, Dollár P, Girshick R, et al. Feature pyramid networks for object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2017:936-944.
[30] Cao J, Chen Q, Guo J, et al. Attention-guided context feature pyramid network for object detection[J/OL]. arXiv, 2020:2005.11475. https://arxiv.org/abs/2005.11475v1.
[31] Yun S, Han D, Chun S, et al. CutMix:Regularization strategy to train strong classifiers with localizable features[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, 2019:6022-6031.
[32] Bochkovskiy A, Wang C Y, Liao H Y M. YOLOv4:Optimal speed and accuracy of object detection[J/OL]. arXiv, 2020:2004.10934. https://arxiv.org/abs/2004.10934v1.
[1] 李英龙, 邓毓弸, 孔赟珑, 陈静波, 孟瑜, 刘帝佑. 基于全色-多光谱双流卷积网络的端到端地物分类方法[J]. 自然资源遥感, 2025, 37(5): 152-161.
[2] 龚绍军, 陈超, 范竞. 一种考虑地物含水量和长时序遥感影像的海岸线精准定位方法[J]. 自然资源遥感, 2025, 37(5): 53-61.
[3] 吴志军, 丛铭, 许妙忠, 韩玲, 崔建军, 赵超英, 席江波, 杨成生, 丁明涛, 任超锋, 顾俊凯, 彭晓东, 陶翊婷. 基于视觉双驱动认知的高分辨率遥感影像自学习分割方法[J]. 自然资源遥感, 2025, 37(5): 73-90.
[4] 王杏伟, 唐康其, 刘燕, 刘欢. 融合FFT和EMHSA的双时相光学遥感影像变化检测网络[J]. 自然资源遥感, 2025, 37(5): 113-121.
[5] 朱娟娟, 黄亮, 朱莎莎. 面向高分辨率遥感影像建筑物提取的SD-BASNet网络[J]. 自然资源遥感, 2025, 37(5): 122-130.
[6] 刘浩然, 严天笑, 朱月琴, 王艳萍, 陈祖谊, 杨昭颖, 朱浩濛. 基于一种改进YOLOv7算法模型的滑坡识别研究——以四川省白格地区为例[J]. 自然资源遥感, 2025, 37(4): 48-57.
[7] 陈兰兰, 范永超, 肖海平, 万俊辉, 陈磊. 结合时序InSAR与IRIME-LSTM模型的大范围矿区地表沉降预测[J]. 自然资源遥感, 2025, 37(3): 245-252.
[8] 张荞, 曹志成, 沈洋, 汪宙峰, 王成武, 许嘉欣. 一种结合孪生倒残差与自注意力增强的遥感影像变化检测方法[J]. 自然资源遥感, 2025, 37(3): 85-94.
[9] 邹海靖, 邹滨, 王玉龙, 张波, 邹伦文. 基于多尺度样本集优化策略的矿区工业固废及露天采场遥感识别[J]. 自然资源遥感, 2025, 37(3): 1-8.
[10] 郭伟, 李煜, 金海波. 高维上下文注意和双感受野增强的SAR船舶检测[J]. 自然资源遥感, 2025, 37(3): 104-112.
[11] 陈民, 彭栓, 王涛, 吴雪芳, 刘润璞, 陈玉烁, 方艳茹, 阳平坚. 基于资源1号02D高光谱图像湿地水体分类方法对比——以白洋淀为例[J]. 自然资源遥感, 2025, 37(3): 133-141.
[12] 何晓军, 罗杰. 结合上下文与类别感知特征融合的高分遥感图像语义分割[J]. 自然资源遥感, 2025, 37(2): 1-10.
[13] 郑宗生, 高萌, 周文睆, 王政翰, 霍志俊, 张月维. 基于样本迭代优化策略的密集连接多尺度土地覆盖语义分割[J]. 自然资源遥感, 2025, 37(2): 11-18.
[14] 庞敏. 国产多源卫片图斑智能提取平台研究与应用[J]. 自然资源遥感, 2025, 37(2): 148-154.
[15] 聂诗音, 刘严松, 李会玲, 薛凯伦, 沈杜衡, 何博宇. 基于图谱耦合的高寒湿地土地类型识别与分类[J]. 自然资源遥感, 2025, 37(2): 204-211.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发