Please wait a minute...
 
自然资源遥感  2025, Vol. 37 Issue (6): 77-87    DOI: 10.6046/zrzyyg.2024242
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
DN-Net:密集嵌套网络的遥感建筑物提取
刘毅(), 刘涛, 高天迎(), 李国燕
天津城建大学计算机与信息工程学院,天津 300384
DN-NET: A densely nested network for building extraction from remote sensing images
LIU Yi(), LIU Tao, GAO Tianying(), LI Guoyan
School of Computer and Information Engineering, Tianjin Chengjian University, Tianjin 300384, China
全文: PDF(6827 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

建筑物提取的目的是从遥感图像中分割出建筑物像素,在城市规划、城市动态监测等应用中起着至关重要的作用。针对遥感建筑物提取时出现空洞、误检和漏检等问题,提出一种密集嵌套网络(densely nested network,DN-Net)。DN-Net中子网络结合改进残差卷积模块将遥感建筑物进行粗略轮廓提取; 为精准定位建筑物的位置,引入坐标注意力模块(coordinate attention module,CAM),有效减少误检现象; 为了解决遥感建筑物提取时出现空洞现象,采取级联卷积模块(cascade convolutional module,CCM),凭借不同的大小的卷积核提取更丰富的细节信息,从而精准提取遥感建筑物。选取WHU数据集进行了试验和精度评估,在WHU的验证集上,交并比和F1分数分别达到了89.20%和94.29%; 在测试集上,分别为89.85%和94.65%。结果表明: DN-Net显著提升建筑物提取精度,使得提取出的建筑物的边界更加完整和精细,表现出对不同大小建筑物的良好提取能力。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘毅
刘涛
高天迎
李国燕
关键词 建筑物提取改进残差卷积模块坐标注意力模块级联卷积模块    
Abstract

Building extraction aims to separate building pixels from remote sensing images, which plays a crucial role in applications such as urban planning and urban dynamic monitoring. However, building extraction generally faces challenges, such as void, false positives, and false negatives. Given this, this paper proposed a densely nested network (DN-Net). The sub-networks in the DN-Net were integrated with the enhanced residual convolutional module (ERCM) to extract rough contours of buildings from remote sensing images. Furthermore, to accurately locate the buildings, a coordinate attention module (CAM) was incorporated, effectively avoiding false positives. To deal with the holes during building extraction, a cascade convolutional module (CCM) was used, allowing the extraction of richer details with convolution kernels of various sizes, thereby ensuring accurate building extraction. The DN-Net was tested with the WHU datasets to assess its accuracy. The results showed that the DN-Net exhibited an intersection over union (IoU) of 89.20% and a F1 score of 94.29% on the validation set and 89.85% and 94.65%, respectively, on the test set. The results confirm that the DN-Net can significantly improve the building extraction accuracy, with more complete and detailed boundaries of buildings being extracted, demonstrating an outstanding ability to extract buildings of varying sizes.

Key wordsbuilding extraction    enhanced residual convolutional module (ERCM)    coordinate attention module (CAM)    cascade convolutional module (CCM)
收稿日期: 2024-07-15      出版日期: 2025-12-31
ZTFLH:  TP79  
基金资助:国家自然科学基金项目“基于MRE支座的软土场地结构智能隔震理论与方法研究”(52178295);2022年天津市研究生科研创新项目“基于深度学习的遥感图像道路分割算法研究”(2022SKYZ335)
通讯作者: 高天迎(1977-),男,硕士,讲师,主要从事软件工程、编程语言与程序分析。Email: gty@tcu.edu.cn
作者简介: 刘毅(1969-),男,博士,教授,主要从事计算机控制与网络通信的研究。Email: lgliuyi@163.com
引用本文:   
刘毅, 刘涛, 高天迎, 李国燕. DN-Net:密集嵌套网络的遥感建筑物提取[J]. 自然资源遥感, 2025, 37(6): 77-87.
LIU Yi, LIU Tao, GAO Tianying, LI Guoyan. DN-NET: A densely nested network for building extraction from remote sensing images. Remote Sensing for Natural Resources, 2025, 37(6): 77-87.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2024242      或      https://www.gtzyyg.com/CN/Y2025/V37/I6/77
Fig.1  DN-Net网络模型
Fig.2  子模块处理过程
Fig.3  改进残差卷积块
Fig.4  CAM模块
Fig.5  CCM模块
训练优化法 IoU F1 P R
Adam 86.92 93.00 92.19 93.82
Adagrad 88.02 93.63 93.58 93.53
SGD 89.20 94.29 94.31 94.27
Tab.1  不同训练优化方法结果
Fig.6  深度监督示意图
深度监督 IoU F1 P R
${X}_{\mathrm{D}\mathrm{e}}^{\mathrm{0,5}}$ 88.79 94.04 92.91 95.23
DS2 88.10 93.67 92.45 94.92
DS1 89.20 94.29 94.31 94.27
Tab.2  深度监督对DN-Net分割性能的影响
参数 DN-Net Block3 CAM CCM IoU F1 P
表现 88.82 94.08 93.46
89.02 94.19 93.99
89.09 94.23 94.11
89.20 94.29 94.31
Tab.3  CAM和CCM对DN-Net分割性能的影响
Fig.7  特征响应可视化
类型 小型建筑物 密集建筑物 大型建筑物
示例1 示例2 示例1 示例2 示例1 示例2
原图
标签
DN-Net +Block3
DN-Net +Block3+CAM
DN-Net +Block3+CCM
DN-Net+Block3+CAM+CCM
Tab.4  可视化对比
卷积块 IoU F1 P R
Block1 88.69 94.00 93.79 94.22
Block2 88.78 94.10 93.72 94.60
Block3 88.82 94.08 93.46 94.70
Tab.5  改进残差卷积结果
卷积核 IoU F1 P R
[1,3] 88.68 94.00 93.34 94.68
[1,3,5] 88.82 94.08 93.46 94.70
[1,3,5,7] 89.09 94.23 94.11 94.35
Tab.6  CCM模块消融实验
网络 验证集 测试集
IoU F1 P R IoU F1 P R
SegNet 87.39 92.27 93.15 93.39 88.07 93.66 93.69 93.62
UNet 87.22 93.17 92.48 93.88 88.24 93.75 94.43 93.09
ENet 85.79 92.35 91.62 93.09 86.62 92.83 93.51 92.17
UNet++ 88.18 93.72 93.51 93.92 88.65 93.99 93.43 94.55
ERFNet 86.42 92.71 91.10 94.38 87.17 93.14 92.31 93.99
UNet3+ 88.58 93.95 93.02 93.70 89.19 94.29 93.25 95.15
T-LinKNet 88.70 94.01 92.87 95.21 89.33 94.37 94.39 94.36
Res_ASPP_UNNet++ 88.35 93.81 94.00 94.18 88.91 94.13 93.65 94.61
DN-Net 89.20 94.29 94.31 94.27 89.85 94.65 94.12 95.20
Tab.7  不同网络在WHU数据集上的分割精度对比
类型 原图 SegNet UNet ENet UNet++ ERFNet UNet3+ T-LinK
Net
Res_
UNet++
DN-Net 标签
小型建筑物
密集建筑物
大型建筑物
Tab.8  不同模型在WHU验证集上的可视化
类型 原图 SegNet UNet ENet UNet++ ERFNet UNet3+ T-LinK
Net
Res_
UNet++
DN-Net 标签
小型建筑物
密集建筑物
大型建筑物
Tab.9  不同模型在WHU测试集上的可视化
Model FLOPs/109 参数量/106 IoU/% F1%
SegNet 0.5 0.4 88.07 93.66
UNet 31.1 13.4 88.24 93.75
ENet 0.5 0.4 86.62 92.83
UNet++ 17.5 24.7 88.65 93.99
ERFNet 3.4 2.1 87.17 93.14
UNet3+ 90.5 7.6 89.19 94.29
T-LinKNet 153.2 200.0 89.33 94.37
Res_ASPP_UNNet++ 8.8 4.5 88.91 94.13
DN-Net 43.2 12.9 89.85 94.65
Tab.10  在WHU数据集不同网络复杂性分析
[1] Chen J, Xia M, Wang D, et al. Double branch parallel network for segmentation of buildings and waters in remote sensing images[J]. Remote Sensing, 2023, 15(6):1536.
doi: 10.3390/rs15061536
[2] Ji X, Tang L, Lu T, et al. DBENet:Dual-branch ensemble network for sea-land segmentation of remote-sensing images[J]. IEEE Transactions on Instrumentation and Measurement, 2023,72:5503611.
[3] Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4):640-651.
doi: 10.1109/TPAMI.2016.2572683 pmid: 27244717
[4] Ronneberger O, Fischer P, Brox T. U-net:Convolutional networks for biomedical image segmentation[M]//Lecture Notes in Computer Science. Cham: Springer International Publishing, 2015:234-241.
[5] Badrinarayanan V, Kendall A, Cipolla R. SegNet:A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12):2481-2495.
doi: 10.1109/TPAMI.2016.2644615 pmid: 28060704
[6] Noh H, Hong S, Han B. Learning deconvolution network for semantic segmentation[C]//2015 IEEE International Conference on Computer Vision (ICCV).December 7-13,2015, Santiago,Chile.IEEE, 2015:1520-1528.
[7] Chen L C, Papandreou G, Kokkinos I, et al. DeepLab:Semantic image segmentation with deep convolutional nets,atrous convolution,and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4):834-848.
doi: 10.1109/TPAMI.2017.2699184
[8] Chen LC, Papandreou G, Schroff F, et al. Rethinking atrous convolution for semantic image segmentation[J]. arXiv preprint arXiv:170605587, 2017.
[9] Chen L C, Zhu Y, Papandreou G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[M]//Lecture Notes in Computer Science. Cham: Springer International Publishing, 2018:833-851.
[10] Paszke A, Chaurasia A, Kim S, et al. ENet:A deep neural network architecture for real-time semantic segmentation[J/OL].(2016-06-07).https://arxiv.org/abs/1606.021470.
[11] Romera E, Álvarez J M, Bergasa L M, et al. ERFNet:Efficient residual factorized ConvNet for real-time semantic segmentation[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(1):263-272.
doi: 10.1109/TITS.2017.2750080
[12] Lin J, Jing W, Song H, et al. ESFNet:Efficient network for building extraction from high-resolution aerial images[J]. IEEE Access, 2822,7:54285-54294.
[13] Zhou Z W, Rahman Siddiquee MM, Tajbakhsh N, et al. Unet++:A nested u-net architecture for medical image segmentation[C]//Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support:4th International Workshop, DLMIA 2018,and 8th International Workshop,ML-CDS 2018,Held in Conjunction with MICCAI 2018,Granada,Spain,September 20,2018,Proceedings 4.Springer, 2018:3-11.
[14] Huang H, Lin L, Tong R, et al. UNet 3:A full-scale connected UNet for medical image segmentation[C]// ICASSP 2020-2020 IEEE International Conference on Acoustics,Speech and Signal Processing (ICASSP). May 4-8,2020, Barcelona,Spain.IEEE, 2020:1055-1059.
[15] Liu Z, Lin Y T, Cao Y, et al. Swin transformer: Hierarchical vision transformer using shifted windows[C]//2021 IEEE/CVF International Conference on Computer Vision (ICCV).Montreal,QC,Canada. IEEE, 2021:9992-10002.
[16] 王振庆, 周艺, 王世新, 等. IEU-Net高分辨率遥感影像房屋建筑物提取[J]. 遥感学报, 2021, 25(11):2245-2254.
Wang Z Q, Zhou Y, Wang S X, et al. House building extraction from high-resolution remote sensing images based on IEU-Net[J]. National Remote Sensing Bulletin, 2021, 25(11):2245-2254.
doi: 10.11834/jrs.20210042
[17] 张立亭, 孔文学, 罗亦泳, 等. 改进LinkNet的高分辨率遥感影像建筑物提取方法[J]. 测绘科学, 2022, 47(9):120-127,145.
Zhang L T, Kong W X, Luo Y Y, et al. Improved LinkNet building extraction method for high resolution remote sensing image[J]. Science of Surveying and Mapping, 2022, 47(9):120-127,145.
[18] 龙丽红, 朱宇霆, 闫敬文, 等. 新型语义分割D-UNet的建筑物提取[J]. 遥感学报, 2023, 27(11):2593-2602.
Long L H, Zhu Y T, Yan J W, et al. New building extraction method based on semantic segmentation[J]. National Remote Sensing Bulletin, 2023, 27(11):2593-2602.
doi: 10.11834/jrs.20211029
[19] 吕少云, 李佳田, 阿晓荟, 等. Res_ASPP_UNet++:结合分离卷积与空洞金字塔的遥感影像建筑物提取网络[J]. 遥感学报, 2023, 27(2):502-519.
Lyu S Y, Li J T, A X H, et al. Res_ASPP_UNet++:Building an extraction network from remote sensing imagery combining depthwise separable convolution with atrous spatial pyramid pooling[J]. National Remote Sensing Bulletin, 2023, 27(2):502-519.
doi: 10.11834/jrs.20210477
[20] 刘晨晨, 葛小三, 武永斌, 等. 基于混合注意力机制和Deeplabv3+的遥感影像建筑物提取方法[J]. 自然资源遥感, 2025, 37(1):31-37.doi:10.6046/zrzyyg.2023295.
Liu C C, Ge X S, Wu Y B, et al. A method for information extraction of buildings from remote sensing image based on hybrid attention mechanism and Deeplabv3+[J] Remote Sensing for Natural Resource, 2025, 37(1):31-37.doi:10.6046/zrzyyg.2023295.
[21] 季顺平, 魏世清. 遥感影像建筑物提取的卷积神经元网络与开源数据集方法[J]. 测绘学报, 2019, 48(4):448-459.
doi: 10.11947/j.AGCS.2019.20180206
Ji S P, Wei S Q. Building extraction via convolutional neural networks from an open remote sensing building dataset[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(4):448-459.
[22] Lee C Y, Xie S, Gallagher P, et al. Deeply-supervised nets[C]// Artificial Intelligence and Statistics. PMLR, 2015:562-570.
[1] 朱娟娟, 黄亮, 朱莎莎. 面向高分辨率遥感影像建筑物提取的SD-BASNet网络[J]. 自然资源遥感, 2025, 37(5): 122-130.
[2] 刘晨晨, 葛小三, 武永斌, 余海坤, 张蓓蓓. 基于混合注意力机制和Deeplabv3+的遥感影像建筑物提取方法[J]. 自然资源遥感, 2025, 37(1): 31-37.
[3] 曲海成, 梁旭. 融合混合注意力机制与多尺度特征增强的高分影像建筑物提取[J]. 自然资源遥感, 2024, 36(4): 107-116.
[4] 武宇, 张俊, 李屹旭, 黄康钰. 基于改进U-Net的建筑物集群识别研究[J]. 国土资源遥感, 2021, 33(2): 48-54.
[5] 卢麒, 秦军, 姚雪东, 吴艳兰, 朱皓辰. 基于多层次感知网络的GF-2遥感影像建筑物提取[J]. 国土资源遥感, 2021, 33(2): 75-84.
[6] 付盈, 国巧真, 潘应阳, 汪东川. 基于SPOT6数据的建筑物提取规则研究[J]. 国土资源遥感, 2017, 29(3): 65-69.
[7] 王旭东, 段福洲, 屈新原, 李丹, 余攀锋. 面向对象和SVM结合的无人机数据建筑物提取[J]. 国土资源遥感, 2017, 29(1): 97-103.
[8] 王雪, 李培军, 姜莎莎, 刘婧, 宋本钦. 利用机载LiDAR数据和高分辨率图像提取复杂城区建筑物[J]. 国土资源遥感, 2016, 28(2): 106-111.
[9] 李峰, 崔希民, 袁德宝, 王强, 吴亚军. 利用机载LiDAR点云提取复杂城市建筑物面域[J]. 国土资源遥感, 2013, 25(3): 85-89.
[10] 张峰, 薛艳丽, 李英成, 丁晓波. 基于SVM的多源遥感影像面向对象建筑物提取方法[J]. 国土资源遥感, 2008, 20(2): 27-29.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发