Please wait a minute...
 
国土资源遥感  2018, Vol. 30 Issue (3): 83-88    DOI: 10.6046/gtzyyg.2018.03.12
     本期目录 | 过刊浏览 | 高级检索 |
基于改进的METRIC模型的农田潜热通量估算
余健1, 姚云军1(), 赵少华2, 贾坤1, 张晓通1, 赵祥1, 孙亮3
1. 北京师范大学遥感科学国家重点实验室,遥感科学与工程研究院,北京 100875
2. 环境保护部卫星环境应用中心,北京 100094
3. 美国农业部水文与遥感实验室,贝茨维尔 MD20705
Estimating latent heat flux over farmland from Landsat images using the improved METRIC model
Jian YU1, Yunjun YAO1(), Shaohua ZHAO2, Kun JIA1, Xiaotong ZHANG1, Xiang ZHAO1, Liang SUN3
1. State Key Laboratory of Remote Sensing Science, College of Remote Sensing Science and Engineering, Beijing Normal University, Beijing 100875, China
2. Satellite Environment Center, Ministry of Environmental Protection, Beijing 100094, China
3. USDA-ARS Hydrology and Remote Sensing Laboratory, Beltsville MD20705, USA
全文: PDF(3325 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

基于热红外遥感的潜热通量估算在农业干旱和水资源管理方面具有重要意义。利用Landsat卫星遥感热红外数据和单窗算法来获取地表温度,再通过改进地表粗糙度参数,提出基于地表粗糙度改进的基于高分辨率和内在校准的蒸散估算法(mapping evapotranspiration at high resolution and with internalized calibration, METRIC)估算农田潜热通量,并利用海河流域怀来和密云2个农田通量观测站的通量观测数据验证估算结果,实验结果表明: 改进的METRIC模型模拟值与观测值相关系数平方(R 2)为0.97,优于传统的METRIC模型(R 2=0.89),改进后模型具有更高的农田潜热通量估算精度; 此外,空间分布也表明改进后的模型估算值空间格局更加合理。由于数据获取的局限性,仅采用了北京2个站点数据对模型进行验证,在其他区域仍需要进一步验证。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
余健
姚云军
赵少华
贾坤
张晓通
赵祥
孙亮
关键词 农田潜热通量热红外遥感METRIC地表温度    
Abstract

Estimation of latent heat flux based on thermal infrared remote sensing is of great significance in agricultural drought and water resources management. This paper examined the applicability of using METRIC model to estimate latent heat flux over farmland from Landsat images. Land surface temperature (Ts) required for estimation of the flux was computed from Landsat thermal infrared data by the mono-window algorithm. Meanwhile, an improved METRIC algorithm based on surface roughness was proposed to estimate the latent heat flux of farmland by improving the surface roughness parameters. The result of the algorithm was verified by the flux observation data from two observation stations of Huailai and Miyun in the Haihe River basin. The results show that the square of correlation coefficient (R 2) between simulated and observed values is 0.97, which is better than the conventional METRIC model (R 2 = 0.89). The improved algorithm has higher estimation accuracy of latent heat flux. In addition, the spatial distribution of latent heat flux also shows that the spatial pattern of the improved model is more reasonable. However, due to the limitation of data acquisition, only two stations in Beijing have been used to validate the algorithm, and hence further verification in other areas is needed.

Key wordsfarmland latent heat flux    thermal infrared remote sensing    METRIC    land surface temperature
收稿日期: 2016-12-12      出版日期: 2018-09-10
:  TP751.1  
基金资助:国家自然科学基金面上项目“陆面潜热通量遥感融合估算及其时空变化归因研究”(41671331);国家自然科学青年基金项目“基于地表温度-植被指数特征空间进行土壤水分监测研究”(41301457);国家重点研发计划项目“基于国产遥感卫星的典型要素提取技术”(2016YFB0501404)
通讯作者: 姚云军
作者简介: 余 健(1991-),男,硕士研究生,主要从事热红外遥感蒸散估算研究。Email: yujian165@sina.com。
引用本文:   
余健, 姚云军, 赵少华, 贾坤, 张晓通, 赵祥, 孙亮. 基于改进的METRIC模型的农田潜热通量估算[J]. 国土资源遥感, 2018, 30(3): 83-88.
Jian YU, Yunjun YAO, Shaohua ZHAO, Kun JIA, Xiaotong ZHANG, Xiang ZHAO, Liang SUN. Estimating latent heat flux over farmland from Landsat images using the improved METRIC model. Remote Sensing for Land & Resources, 2018, 30(3): 83-88.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2018.03.12      或      https://www.gtzyyg.com/CN/Y2018/V30/I3/83
Fig.1  研究区通量观测站点空间分布图
Fig.2  地表温度及地表净辐射通量与站点观测值散点图
Fig.3  模拟值与站点观测值散点图
Fig.4  改进METRIC模型与传统模型模拟潜热通量分布及其差值分布
[1] 姚云军, 程洁, 赵少华 , 等. 基于热红外遥感的农田蒸散估算方法研究综述[J]. 地球科学进展, 2012,27(12):1308-1318.
doi: 10.11867/j.issn.1001-8166.2012.12.1308
Yao Y J, Cheng J, Zhao S H , et al. Estimation of farmland evapotranspiration:A review of methods using thermal infrared remote sensing data[J]. Advances in Earth Science, 2012,27(12):1308-1318.
[2] 周倜, 彭志晴, 辛晓洲 , 等. 非均匀地表蒸散遥感研究综述[J]. 遥感学报, 2016,20(2):257-277.
doi: 10.11834/jrs.20165030
Zhou T, Peng Z Q, Xin X Z , et al. Remote sensing research of evapotranspiration over heterogeneous surfaces:A review[J]. Journal of Remote Sensing, 2016,20(2):257-277.
[3] Brown K W, Rosenberg N J . A resistance model to predict evapotranspiration and its application to a sugar beet field[J]. Agronomy Journal, 1973,65(3):341-347.
doi: 10.2134/agronj1973.00021962006500030001x
[4] Seguin B, Itier B . Using midday surface temperature to estimate daily evaporation from satellite thermal IR data[J]. International Journal of Remote Sensing, 1983,4(2):371-383.
doi: 10.1080/01431168308948554
[5] Shuttleworth W J, Wallace J S . Evaporation from sparse crops-an energy combination theory[J]. Quarterly Journal of the Royal Meteorological Society, 1985,111(469):839-855.
doi: 10.1002/qj.49711146910
[6] Shuttleworth W J . Evaporation Models in Hydrology[M]. New York:Springer, 1991: 93-120.
[7] Bastiaanssen W G M, Pelgrum H, Wang J, et al.A remote sensing surface energy balance algorithm for land( SEBAL) .:Part 2:Validation[J].Journal of Hydrology, 1998, 212-213:213-229.
doi: 10.1016/S0022-1694(98)00254-6
[8] Bastiaanssen W G M . SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin,Turkey[J]. Journal of Hydrology, 2000,229(1/2):87-100.
doi: 10.1016/S0022-1694(99)00202-4
[9] Allen R G, Tasumi M, Trezza R . Satellite-based energy balance for mapping evapotranspiration with internalized calibration(METRIC)-model[J]. Journal of Irrigation and Drainage Engineering, 2007,133(4):380-394.
doi: 10.1061/(ASCE)0733-9437(2007)133:4(380)
[10] Allen R, Irmak A, Trezza R , et al. Satellite-based ET estimation in agriculture using SEBAL and METRIC[J]. Hydrological Processes, 2011,25(26):4011-4027.
doi: 10.1002/hyp.8408
[11] 何磊, 王瑶, 别强 , 等. 基于SEBS-METRIC方法的黑河流域中游地区农田蒸散[J]. 兰州大学学报(自然科学版), 2013,49(4):504-510.
He L, Wang Y, Bie Q , et al. Estimation of field evapotranspiration in the middle reaches of Heihe River basin based on SEBS-METRIC method[J]. Journal of Lanzhou University(Natural Sciences), 2013,49(4):504-510.
[12] 连晋姣, 黄明斌, 李杏鲜 , 等. 夏季黑河中游绿洲样带蒸散量遥感估算[J]. 农业工程学报, 2014,30(15):120-129.
doi: 10.3969/j.issn.1002-6819.2014.15.017
Lian J J, Huang M B, Li X X , et al. Evapotranspiration estimation for oasis transect in middle reach of Heihe river basin based on remote sensing[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014,30(15):120-129.
[13] 曹永强, 张亭亭, 徐丹 , 等. 海河流域蒸散发时空演变规律分析[J]. 资源科学, 2014,36(7):1489-1500.
Cao Y Q, Zhang T T, Xu D , et al. Analysis of evapotranspiration of temporal-space evolution in the Haihe basin[J]. Resources Science, 2014,36(7):1489-1500.
[14] 刘小莽, 郑红星, 刘昌明 , 等. 海河流域潜在蒸散发的气候敏感性分析[J]. 资源科学, 2009,31(9):1470-1476.
Liu X M, Zheng H X, Liu C M , et al. Sensitivity of the potential evapotranspiration to key climatic variables in the Haihe River basin[J]. Resources Science, 2009,31(9):1470-1476.
[15] 覃志豪, Zhang M H, Karnieli A, 等. 用陆地卫星TM6数据演算地表温度的单窗算法[J]. 地理学报, 2001,56(4):456-466.
Qin Z H, Zhang M H, Karnieli A , et al. Mono-window algorithm for retrieving land surface temperature from Landsat TM6 data[J]. Acta Geographica Sinica, 2001,56(4):456-466.
[16] 覃志豪 , Li W J, Zhang M H, 等. 单窗算法的大气参数估计方法[J].国土资源遥感, 2003(2):37-43.doi: 10.6046/gtzyyg.2003.02.10.
doi: 10.3969/j.issn.1001-070X.2003.02.010
Qin Z H, Li W J, Zhang M H , et al. Estimating of the essential atmospheric parameters of mono-window algorithm for land surface temperature retrieval from landsat TM6[J].Remote Sensing For Land and Resources, 2003(2):37-43.doi: 10.6046/gtzyyg.2003.02.10.
[17] Moran M S, Jackson R D . Assessing the spatial distribution of evapotranspiration using remotely sensed inputs[J]. Journal of Environmental Quality, 1991,20(4):725-737.
doi: 10.2134/jeq1991.00472425002000040003x
[1] 伯英杰, 曾业隆, 李国庆, 曹兴文, 姚清秀. 浮岛光伏电场对地表温度空间分布特征的影响[J]. 自然资源遥感, 2022, 34(1): 158-168.
[2] 李特雅, 宋妍, 于新莉, 周圆锈. 卫星热红外温度反演钢铁企业炼钢月产量估算模型[J]. 自然资源遥感, 2021, 33(4): 121-129.
[3] 袁倩颖, 马彩虹, 文琦, 李学梅. 六盘山贫困区生长季植被覆盖变化及其对水热条件的响应[J]. 国土资源遥感, 2021, 33(2): 220-227.
[4] 叶婉桐, 陈一鸿, 陆胤昊, 吴鹏海. 基于GEE的2000—2019年间升金湖湿地不同季节地表温度时空变化及地表类型响应[J]. 国土资源遥感, 2021, 33(2): 228-236.
[5] 范嘉智, 罗宇, 谭诗琪, 马雯, 张弘豪, 刘富来. 基于FY-3C/MWRI的湖南省地表温度遥感反演评价[J]. 国土资源遥感, 2021, 33(1): 249-255.
[6] 周芳成, 唐世浩, 韩秀珍, 宋小宁, 曹广真. 云下遥感地表温度重构方法研究[J]. 国土资源遥感, 2021, 33(1): 78-85.
[7] 赵冰, 毛克彪, 蔡玉林, 孟祥金. 中国地表温度时空演变规律研究[J]. 国土资源遥感, 2020, 32(2): 233-240.
[8] 曹琦, 师满江, 周亮, 王婷, 彭黎君, 郑仕雷. 山地城市裸地时空变化的热环境响应特征研究[J]. 国土资源遥感, 2019, 31(4): 190-198.
[9] 吴迪, 陈健, 石满, 覃帮勇, 李盛阳. 基于Savitzky-Golay滤波算法的FY-2F地表温度产品时间序列重建[J]. 国土资源遥感, 2019, 31(2): 59-65.
[10] 熊俊楠, 李伟, 程维明, 范春捆, 李进, 赵云亮. 高原地区LST空间分异特征及影响因素研究——以桑珠孜区为例[J]. 国土资源遥感, 2019, 31(2): 164-171.
[11] 李静, 孙强强, 张平, 孙丹峰, 温礼, 李宪文. 基于多时相热红外遥感的钢铁企业生产状态辅助监测[J]. 国土资源遥感, 2019, 31(1): 220-228.
[12] 吴莹, 姜苏麟, 王振会. 无线电频率干扰对MWRI资料反演地表温度的影响[J]. 国土资源遥感, 2018, 30(4): 90-96.
[13] 杨敏, 杨贵军, 王艳杰, 张勇峰, 张智宏, 孙晨红. 北京城市热岛效应时空变化遥感分析[J]. 国土资源遥感, 2018, 30(3): 213-223.
[14] 华俊玮, 祝善友, 张桂欣. 基于随机森林算法的地表温度降尺度研究[J]. 国土资源遥感, 2018, 30(1): 78-86.
[15] 陈瀚阅, 朱利, 李家国, 范协裕. 基于Landsat8数据的2种海表温度反演单窗算法对比——以红沿河核电基地海域为例[J]. 国土资源遥感, 2018, 30(1): 45-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发