Please wait a minute...
 
自然资源遥感  2022, Vol. 34 Issue (1): 158-168    DOI: 10.6046/zrzyyg.2020376
     技术应用 本期目录 | 过刊浏览 | 高级检索 |
浮岛光伏电场对地表温度空间分布特征的影响
伯英杰1,2(), 曾业隆3, 李国庆1(), 曹兴文4, 姚清秀2
1.鲁东大学资源与环境工程学院,烟台 264025
2.中国地质大学(北京)海洋学院,北京 100083
3.中国科学院空天信息创新研究院遥感科学国家重点实验室,北京 100101
4.中国科学院新疆生态与地理研究所荒漠与绿洲国家重点实验室,乌鲁木齐 830011
Impacts of floating solar parks on spatial pattern of land surface temperature
BO Yingjie1,2(), ZENG Yelong3, LI Guoqing1(), CAO Xingwen4, YAO Qingxiu2
1. School of Resources and Environmental Engineering, Ludong University, Yantai 264025, China
2. School of Ocean Sciences, China University of Geosciences(Beijing), Beijing 100083, China
3. State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China
4. State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
全文: PDF(6342 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

近些年我国光伏产业发展迅速,评估大型光伏电场对环境的影响对指导光伏产业的健康发展具有重要意义。光伏电场对局地热环境的改变开始得到了国内外研究人员的关注。浮岛(也称水面漂浮式)光伏电场作为近年来光伏发电的新开发模式,其对地表温度(land surface temperature, LST)空间分布特征的影响尚不清晰。该文基于Landsat8时间序列遥感数据,利用单通道算法提取了安徽省淮南市典型浮岛光伏电场及其邻近区域的LST数据集,通过构建逐月LST与对应月份的气温之差(LSTs-a)判断光伏电场对LST空间分布特征的影响模式、影响范围和季节差异进行了分析,并明确了建设区不同建设阶段对LST的影响程度。结果表明: ①浮岛光伏电场的建设明显改变了建设区的热环境,在温度变化最明显的夏季和冬季都存在增温效应,增温效应主要集中在建设区200 m范围内,对其周围典型地类的增温效应非常微弱。②浮岛光伏电场建设阶段和建成阶段,建设区的月均LST普遍高于水体,接近于林地的LST; 2个阶段的年均增温幅度分别为3.26 ℃和4.50 ℃。③该研究可为光伏电场对局地环境影响评价的相关研究提供借鉴,并建议从无云时间序列LST构建,光伏电场增/降温幅度的分离,不同下垫面光伏电场对邻域LST空间分布特征的影响范围、程度与归因分析等方面进行深入研究。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
伯英杰
曾业隆
李国庆
曹兴文
姚清秀
关键词 环境影响评价地表温度太阳能光伏Landsat    
Abstract

With the rapid development of China’s photovoltaic industry in recent years, the assessment of the impacts of the large-scale solar parks on the environment is greatly significant for guiding the healthy development of the photovoltaic industry. The changes in the local thermal environment induced by solar parks have attracted the attention of researchers at home and abroad. Floating solar parks (also known as floating-on-water solar parks) serve as a new development mode of photovoltaic power generation in recent years. However, their impacts on the spatial pattern of land surface temperature(LST) are currently unclear. Using the single-channel algorithm, this study extracted the LST dataset of the floating solar park in Huainan City and its adjacent areas from Landsat8 time-series remote sensing data. Then, this study determined the differences between monthly LST and air temperature of the corresponding month (LSTs-a) and analyzed the influencing mode and scopes of floating solar parks on the spatial pattern of LST, as well as their seasonal differences. Finally, this study ascertained the influencing degrees of different construction stages on LST in the construction area. The results are as follows. ① The construction of the floating solar park significantly changed the thermal environment of the construction area, and warming effect occurred during both summer and winter when the temperature changes the most appearantly. Moreover, the warming effect mainly concentrated with 200 m of the construction area, while being very weak in typical surrounding land cover. ② During the construction and the completion phases of the floating solar park, the average monthly LST in the construction area was generally higher than that of the water body and was close to that in the forest. The average annual LST increased by 3.26 ℃ and 4.50 ℃, respectively in the construction and the completion phases. ③ This study can serve as a reference for the related research on assessing the impacts of the floating solar parks on the local environment. The authors recommended conducting an in-depth study from the aspects of the construction of cloudless time-series LST datasets, the separation of the increased/decreased amplitude of the temperature induced by floating solar parks, and the influencing scope and degrees and the genesis analysis of the distribution pattern of LST on the different types of land cover in a floating solar park and its adjacent areas.

Key wordsenvironmental impact assessment    land surface temperature (LST)    solar photovoltaic power generation    Landsat
收稿日期: 2020-12-01      出版日期: 2022-03-14
ZTFLH:  TP79  
基金资助:国家自然科学基金青年基金项目“风电场对不同草地类型地表温度和蒸散发的影响研究”编号(41601598);山东省高等学校大学生创新创业训练计划项目“浮岛光伏电场对地表温度的影响研究”共同资助编号(S201910451159)
通讯作者: 李国庆
作者简介: 伯英杰(1997-),女,硕士,主要从事遥感应用研究。Email: yingjiebo@foxmail.com
引用本文:   
伯英杰, 曾业隆, 李国庆, 曹兴文, 姚清秀. 浮岛光伏电场对地表温度空间分布特征的影响[J]. 自然资源遥感, 2022, 34(1): 158-168.
BO Yingjie, ZENG Yelong, LI Guoqing, CAO Xingwen, YAO Qingxiu. Impacts of floating solar parks on spatial pattern of land surface temperature. Remote Sensing for Natural Resources, 2022, 34(1): 158-168.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2020376      或      https://www.gtzyyg.com/CN/Y2022/V34/I1/158
Fig.1  研究区位置示意图
Fig.2  技术路线
Fig.3  气温及LST随时间的变化
Fig.4  夏季浮岛光伏电场对LSTs-a空间分布的影响
Fig.5  冬季浮岛光伏电场对LSTs-a空间分布的影响
Fig.6  浮岛光伏电场不同建设阶段的逐月LST变化曲线(阴影部分为LST的标准差)
Fig.7  浮岛光伏电场不同建设阶段的LSTs-a变化
[1] Parida B, Iniyan S, Goic R. A review of solar photovoltaic technologies[J]. Renewable and Sustainable Energy Reviews, 2011, 15(3):1625-1636.
doi: 10.1016/j.rser.2010.11.032
[2] International Energy Agency. Global gaps in clean energy Rd and D:Update and recommendations[M]. Paris:International Energy Agency, 2010:1-35.
[3] Itrpv I. International technology roadmap for photovoltaic results 2017[M]. Frankfurt:VDMA Photovoltaic Equipment, 2020:1-72.
[4] Schmela M, Masson G, Mai N N T.Global market outlook for solar power 2016—2020[M]. Belgium:Solar Power Europe, 2016:1-38.
[5] International Energy Agency. Renewables 2019[M]. Paris:International Energy Agency, 2019:1-106.
[6] Li L, Chi T, Zhang M, et al. Multi-layered capital subsidy policy for the Pv industry in China considering regional differences[J]. Sustainability, 2016, 8:45.
doi: 10.3390/su8010045
[7] 朱向东, 贺灿飞, 毛熙彦, 等. 贸易保护背景下中国光伏产业空间格局及其影响因素[J]. 经济地理, 2018, 38(3):98-105.
Zhu X D, He C F, Mao X Y, et al. The spatial pattern of China Pv industry under the background of trade protectionism[J]. Economic Geography, 2018, 38(3):98-105.
[8] Shuang L, Weigand J, Ganguly S. The potential for climate impacts from widespread deployment of utility-scale solar energy installations:An environmental remote sensing perspective[J]. Journal of Remote Sensing and GIS, 2017, 6(1):1000190.
[9] 王祯仪, 汪季, 高永, 等. 光伏电站建设对沙区生态环境的影响[J]. 水土保持通报, 2019, 39(1):191-196.
Wang Z Y, Wang J, Gao Y, et al. Impacts of photovoltaic power station construction on ecology environment in sandy area[J]. Bulletin of Soil and Water Conservation, 2019, 39(1):191-196.
[10] 吴菲. 光伏发电站环境影响评价技术规范研究[D]. 南京:南京信息工程大学, 2012.
Wu F. Study on technical specifications for environmental impact assessment of photovoltaic power station[D]. Nanjing:Nanjing University of Information Science and Technology, 2012.
[11] 周茂荣, 王喜君. 光伏电站工程对土壤与植被的影响——以甘肃河西走廊荒漠戈壁区为例[J]. 中国水土保持科学, 2019, 17(2):132-138.
Zhou M R, Wang X J. Influence of photovoltaic power station engineering on soil and vegetation:Taking the Gobi desert area in the Hexi corridor of Gansu as an example[J]. Science of Soil and Water Conservation, 2019, 17(2):132-138.
[12] 郭丹. 光伏发电现状及其环境效应分析[D]. 保定:华北电力大学, 2016.
Guo D. Photovoltaic power generation and its environmental effects analysis[D]. Baoding:North China Electric Power University, 2016.
[13] 李芬, 杨勇, 赵晋斌, 等. 光伏电站建设运行对气候环境的能量影响[J]. 气象科技进展, 2019, 9(2):71-77.
Li F, Yang Y, Zhao J B, et al. Review on energy impact of photovoltaic power station construction and operation on climate and environment[J]. Advances in Meteorological Science and Technology, 2019, 9(2):71-77.
[14] Bayrakci M, Choi Y, Brownson J R. Temperature dependent power modeling of photovoltaics[J]. Energy Procedia, 2014, 57:745-754.
doi: 10.1016/j.egypro.2014.10.282
[15] Pimentel Da Silva G D, Magrini A B, David A C. A multicriteria proposal for large-scale solar photovoltaic impact assessment[J]. Impact Assessment and Project Appraisal, 2019, 38(1):3-15.
doi: 10.1080/14615517.2019.1604938
[16] Wang S M, Luo X B, Peng Y D. Spatial downscaling of MODIS land surface temperature based on geographically weighted autoregressive model[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13:2532-2546.
doi: 10.1109/JSTARS.4609443
[17] Liou Y A, Nguyen A K, Li M H. Assessing spatiotemporal eco-environmental vulnerability by Landsat data[J]. Ecological Indicators, 2017, 80:52-65.
doi: 10.1016/j.ecolind.2017.04.055
[18] 李彦甫. 基于高分辨率影像的光伏电场信息提取鲁棒性分析及其热环境效应研究[D]. 兰州:兰州大学, 2016.
Li Y F. Robustness of photovoltaic electric field information extraction based on high-resolution image and its thermal environment effect[D]. Lanzhou:Lanzhou University, 2016.
[19] 杨丽薇, 高晓清, 吕芳, 等. 光伏电站对格尔木荒漠地区太阳辐射场的影响研究[J]. 太阳能学报, 2015, 36(9):2160-2166.
Yang L W, Gao X Q, Lyu F, et al. Study on the impact of large solar farm on radiation field in desert areas of Golmud[J]. Acta Energiae Solaris Sinica, 2015, 36(9):2160-2166.
[20] 刘哲, 杨华, 陈星宇, 等. 光伏电场对地表温度的影响分析[J]. 地理空间信息, 2019, 17(10):20-23,10.
Liu Z, Yang H, Chen X Y, et al. Impact analysis of solar park on land surface temperature[J]. Geospatial Information, 2019, 17(10):20-23,10.
[21] 李国庆, Armstrong Alona, 刘哲.光伏电场对地表温度的影响研究[J]. 太阳能学报, 2020, 41(12):117-123.
Li G Q, Armstrong A, Liu Z. Effect of solar power plants on land surface temperature[J]. Acta Energiae Solaris Sinica, 2020, 41(12):117-123.
[22] Pouran H M. From collapsed coal mines to floating solar farms,why China’s new power stations matter[J]. Energy Policy, 2018, 123:414-420.
doi: 10.1016/j.enpol.2018.09.010
[23] Cook M, Schott J R, Mandel J, et al. Development of an operational calibration methodology for the Landsat thermal data archive and initial testing of the atmospheric compensation component of a land surface temperature (LST) product from the archive[J]. Remote Sensing, 2014, 6(11):11244-11266.
doi: 10.3390/rs61111244
[24] Jiménez-Muñoz J C, Sobrino J A. A generalized single-channel method for retrieving land surface temperature from remote sensing data[J]. Journal of Geophysical Research:Atmospheres, 2003, 108:D22.
[25] Jiménez-Muñoz J C, Sobrino J A, Skokovi c ' D, et al. Land surface temperature retrieval methods from Landsat8 thermal infrared sensor data[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(10):1840-1843.
doi: 10.1109/LGRS.2014.2312032
[26] Eldesoky A H M, Gil J, Pont M B. The suitability of the urban local climate zone classification scheme for surface temperature studies in distinct macroclimate regions[J]. Urban Climate, 2021(37):100823.
[27] Wang Y, Ni Z, Hu M, et al. A practical approach of urban green infrastructure planning to mitigate urban overheating:A case study of Guangzhou[J]. Journal of Cleaner Production, 2021(287):124995.
[28] Firozjaei M K, Sedighi A, Firozjaei H K, et al. A historical and future impact assessment of mining activities on surface biophysical characteristics change:A remote sensing-based approach[J]. Eco-logical Indicators, 2021(122):107264.
[29] Barsi J, Schott J, Palluconi F, et al. Validation of a web-based atmospheric correction tool for single thermal band instruments[M]. SPIE, 2005.
[30] Barsi J A, Barker J L, Schott J R. An atmospheric correction parameter calculator for a single thermal band earth-sensing instrument[C]// IEEE International Geoscience and Remote Sensing Symposium, 2003.
[31] Sobrino J A, Jiménez-Muñoz J C, Sòria G, et al. Land surface emissivity retrieval from different VNIR and TIR sensors[J]. IEEE transactions on Geoscience and Remote Sensing, 2008, 46(2):316-327.
doi: 10.1109/TGRS.36
[32] Vancutsem C, Ceccato P, Dinku T, et al. Evaluation of MODIS land surface temperature data to estimate air temperature in different ecosystems over Africa[J]. Remote Sensing of Environment, 2010, 114(2):449-465.
doi: 10.1016/j.rse.2009.10.002
[33] 韩秀珍, 李三妹, 窦芳丽. 气象卫星遥感地表温度推算近地表气温方法研究[J]. 气象学报, 2012, 70(5):1107-1118.
Han X Z, Li S M, Dou F L. Study of obtaining high resolution near-surface atmosphere temperature by using the land surface temperature from meteorological satellite data[J]. Acta Meteorologica Sinica, 2012, 70(5):1107-1118.
[34] 姚永慧, 张百平, 韩芳. 基于MODIS地表温度的横断山区气温估算及其时空规律分析[J]. 地理学报, 2011, 66(7):917-927.
Yao Y H, Zhang B P, Han F. MODIS-based air temperature estimation in the Hengduan Mountains and its spatio-temporal analysis[J]. Acta Geographica Sinica, 2011, 66(7):917-927.
[35] Anselin L. Local indicators of spatial association—Lisa[J]. Geographical Analysis, 1995, 27(2):93-115.
doi: 10.1111/gean.1995.27.issue-2
[36] Kan A K, Li G Q, Yang X, et al. Ecological vulnerability analysis of Tibetan towns with tourism-based economy:A case study of the Bayi District[J]. Journal of Mountain Science, 2018, 15(5):1101-1114.
doi: 10.1007/s11629-017-4789-x
[37] 孟丹, 王明玉, 李小娟, 等. 京沪穗三地近十年夜间热力景观格局演变对比研究[J]. 生态学报, 2013, 33(5):1545-1558.
Meng D, Wang M Y, Li X J, et al. The dynamic change of the thermal environment landscape patterns in Beijing,Shanghai and Guangzhou in the recent past decade[J]. Acta Ecologica Sinica, 2013, 33(5):1545-1558.
doi: 10.5846/stxb
[38] Bartesaghi-Koc C, Osmond P, Peters A. Spatio-temporal patterns in green infrastructure as driver of land surface temperature variability:The case of Sydney[J]. International Journal of Applied Earth Observation and Geoinformation, 2019, 83:101903.
doi: 10.1016/j.jag.2019.101903
[39] Fan C, Wang Z. Spatiotemporal characterization of land cover impacts on urban warming:A spatial autocorrelation approach[J]. Remote Sensing, 2020, 12(10):1631.
doi: 10.3390/rs12101631
[40] 吴迪, 陈健, 石满, 等. 基于Savitzky-Golay滤波算法的FY-2F地表温度产品时间序列重建[J]. 自然资源遥感, 2019, 31(2):59-65.doi: 10.6046/gtzyyg.2019.02.09.
doi: 10.6046/gtzyyg.2019.02.09
Wu D, Chen J, Shi M, et al. Reconstruction of land surface temperature time-series datasets of FY-2F based on Savitzky-Golay filter[J]. Remote Sensing for Land and Resources, 2019, 31(2):59-65.doi: 10.6046/gtzyyg.2019.02.09.
doi: 10.6046/gtzyyg.2019.02.09
[41] 徐永明, 覃志豪, 沈艳. 长江三角洲地区地表温度年内变化规律与气候因子的关系分析[J]. 自然资源遥感, 2010(1):60-64.doi: 10.6046/gtzyyg.2010.01.10.
doi: 10.6046/gtzyyg.2010.01.10
Xu Y M, Qin Z H, Shen Y. The relationship between inter-annual variations of land surfacetemperature and climate factors in the Yangtze River Delta[J]. Remote Sensing for Land and Resources, 2010, 22(1):60-64.doi: 10.6046/gtzyyg.2010.01.10.
doi: 10.6046/gtzyyg.2010.01.10
[42] Chang R, Shen Y B, Luo Y, et al. Observed surface radiation and temperature impacts from the large-scale deployment of photovoltaics in the Barren area of Gonghe,China[J]. Renewable Energy, 2018, 118:131-137.
doi: 10.1016/j.renene.2017.11.007
[43] 殷代英, 马鹿, 屈建军, 等. 大型光伏电站对共和盆地荒漠区微气候的影响[J]. 水土保持通报, 2017, 37(3):15-21.
Yin D Y, Ma L, Qu J J, et al. Effect of large photovoltaic power station on microclimate of desert region in Gonghe Basin[J]. Bulletin of Soil and Water Conservation, 2017, 37(3):15-21.
[1] 李娜, 甘甫平, 董新丰, 李娟, 张世凡, 李彤彤. 基于高分五号高光谱数据的石漠化调查应用研究[J]. 自然资源遥感, 2023, 35(2): 230-235.
[2] 于森, 贾明明, 陈高, 鲁莹莹, 李毅, 张博淳, 路春燕, 李慧颖. 基于LandTrendr算法海南东寨港红树林扰动研究[J]. 自然资源遥感, 2023, 35(2): 42-49.
[3] 马俊俊, 王春磊, 黄晓红. 基于ASTER数据的地表温度遥感反演与产品检验——以黑河流域为例[J]. 自然资源遥感, 2023, 35(1): 198-204.
[4] 陈慧欣, 陈超, 张自力, 汪李彦, 梁锦涛. 一种基于Google Earth Engine云平台的潮间带遥感信息提取方法[J]. 自然资源遥感, 2022, 34(4): 60-67.
[5] 李毅, 程丽娜, 鲁莹莹, 张博淳, 于森, 贾明明. 基于最大值合成和最大类间方差法莱州湾滨海滩涂变化研究[J]. 自然资源遥感, 2022, 34(4): 68-75.
[6] 秦乐, 何鹏, 马玉忠, 刘建强, 杨彬. 基于时空谱特征的遥感影像时间序列变化检测[J]. 自然资源遥感, 2022, 34(4): 105-112.
[7] 毛克彪, 严毅博, 曹萌萌, 袁紫晋, 覃志豪. 北美洲地表温度数据重建及时空变化分析[J]. 自然资源遥感, 2022, 34(4): 203-215.
[8] 董双发, 范晓, 石海岗, 许莉萍, 章新益. 基于Landsat8和无人机的福清核电温排水分布研究[J]. 自然资源遥感, 2022, 34(3): 112-120.
[9] 王驷鹞, 赵春雷, 陈霞, 刘丹. 基于遥感的唐山市绿色空间演化及对热岛效应的影响[J]. 自然资源遥感, 2022, 34(2): 168-175.
[10] 桑潇, 张成业, 李军, 朱守杰, 邢江河, 王金阳, 王兴娟, 李佳瑶, 杨颖. 煤炭开采背景下的伊金霍洛旗土地利用变化强度分析[J]. 自然资源遥感, 2021, 33(3): 148-155.
[11] 张爱竹, 王伟, 郑雄伟, 姚延娟, 孙根云, 辛蕾, 王宁, 胡光. 一种基于分层策略的时空融合模型[J]. 自然资源遥感, 2021, 33(3): 18-26.
[12] 吴霞, 王长军, 樊丽琴, 李磊. 基于多光谱遥感的盐渍化评价指数对宁夏银北灌区土壤盐度预测的适用性分析[J]. 国土资源遥感, 2021, 33(2): 124-133.
[13] 宋奇, 冯春晖, 高琪, 王明玥, 吴家林, 彭杰. 阿拉尔垦区近30年耕地变化及其驱动因子分析[J]. 国土资源遥感, 2021, 33(2): 202-212.
[14] 袁倩颖, 马彩虹, 文琦, 李学梅. 六盘山贫困区生长季植被覆盖变化及其对水热条件的响应[J]. 国土资源遥感, 2021, 33(2): 220-227.
[15] 叶婉桐, 陈一鸿, 陆胤昊, 吴鹏海. 基于GEE的2000—2019年间升金湖湿地不同季节地表温度时空变化及地表类型响应[J]. 国土资源遥感, 2021, 33(2): 228-236.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发