Please wait a minute...
 
国土资源遥感  2021, Vol. 33 Issue (1): 78-85    DOI: 10.6046/gtzyyg.2020113
     技术方法 本期目录 | 过刊浏览 | 高级检索 |
云下遥感地表温度重构方法研究
周芳成1(), 唐世浩1(), 韩秀珍1, 宋小宁2, 曹广真1
1.国家卫星气象中心,北京 100081
2.中国科学院大学,北京 100049
Research on reconstructing missing remotely sensed land surface temperature data in cloudy sky
ZHOU Fangcheng1(), TANG Shihao1(), HAN Xiuzhen1, SONG Xiaoning2, CAO Guangzhen1
1. National Satellite Meteorological Center, Beijing 100081, China
2. University of Chinese Academy Sciences, Beijing 100049, China
全文: PDF(5938 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

地表温度是研究地-气之间水热平衡的重要参数,对地表温度的全天候获取具有重要意义。热红外遥感可以获得较高分辨率空间全覆盖的地表温度产品,但是有云地区数据缺失问题制约了地表温度遥感产品的全天候应用。文章发展了2种对云下缺失的地表温度进行重构的方法,方法1是借助地表温度同化数据集发展了一种时空匹配的数据融合方法,方法2是将当前在海表参数重构研究中较为流行的经验正交函数插值法(data interpolating empirical orthogonal function, DINEOF)方法应用于地表温度的重构研究中。通过对2017年中国地区地表温度遥感数据的重构对比了2种方法的效果与精度,结果显示: 2种方法在整个中国地区不同季节有云条件下精度在2.5~3.5 K之间。方法可为今后地表温度遥感数据的全天候获取提供有益帮助。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周芳成
唐世浩
韩秀珍
宋小宁
曹广真
关键词 地表温度重构地表温度同化数据集经验正交函数插值法    
Abstract

Land surface temperature is a key parameter in the study of the balance of water and heart between land surface and atmosphere. Obtainment of land surface temperature under all-weather conditions is very important. Although thermal infrared remote sensing technology can retrieve land surface temperature with high spatial resolution and full space coverage in cloud-free sky, the missing data in cloudy sky limit the all-weather applications of land surface temperature in some areas. This study develops two methods for reconstructing missing land surface temperature in cloudy skies. One of the methods is a space-time matched interpolation method helped with dataset of lands surface temperature assimilation. The other method is by data interpolating empirical orthogonal function (DINEOF), which is already popular in reconstruction of sea surface parameters but is rarely used in reconstruction of land surface parameters. The two methods are evaluated by both remotely sensed data and ground measured data in 2017, and the results demonstrate that both of them are adaptable in all seasons and all over China. The accuracies of two methods are very close and located between 2.5 and 3.5 K in cloudy conditions in four seasons in China. This study aims to give some useful references in the study of obtainment of land surface temperature under all-weather conditions.

Key wordsland surface temperature    reconstruction    dataset of lands surface temperature assimilation    DINEOF
收稿日期: 2020-04-17      出版日期: 2021-03-18
ZTFLH:  TP79P237  
基金资助:国家重点研发计划项目“全球气象卫星遥感动态监测、分析技术及定量应用方法及平台研究”(2018YFC1506500);“冬奥赛场精细化三维气象特征观测和分析技术研究”共同资助(2018YFF0300101)
通讯作者: 唐世浩
作者简介: 周芳成(1988-),男,博士,工程师,主要从事基于遥感的地表和大气关键参数反演方面的研究。Email: zhoufc@cma.gov.cn
引用本文:   
周芳成, 唐世浩, 韩秀珍, 宋小宁, 曹广真. 云下遥感地表温度重构方法研究[J]. 国土资源遥感, 2021, 33(1): 78-85.
ZHOU Fangcheng, TANG Shihao, HAN Xiuzhen, SONG Xiaoning, CAO Guangzhen. Research on reconstructing missing remotely sensed land surface temperature data in cloudy sky. Remote Sensing for Land & Resources, 2021, 33(1): 78-85.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2020113      或      https://www.gtzyyg.com/CN/Y2021/V33/I1/78
Fig.1  验证区的位置及土地利用类型
(底图为MODIS的2017年土地利用类型产品MCD12C1)
Fig.2  2017年1月9日(冬季)的地表温度分布图
Fig.3  2017年4月27日(春季)的地表温度分布图
Fig.4  2017年7月12日(夏季)的地表温度分布图
Fig.5  2017年10月12日(秋季)的地表温度分布图
Fig.6  晴空条件下2种方法在沙漠地区重构精度验证
Fig.7  晴空条件下2种方法在农田地区重构精度验证
Fig.8  晴空条件下2种方法在林草混合地区重构精度验证
Fig.9  云下地面站点数据和2种重构地表温度的对比散点图
[1] 陈玲, 黄文婷, 伍静, 等. 广西五圩矿田成矿温度变化及找矿方向分析[J]. 地球化学, 2015,44(6):546-555.
Chen L, Huang W T, Wu J, et al. Ore-forming temperature variation and prospecting target of the Wuxu ore field in Guangxi[J]. Geochimica, 2015,44(6):546-555.
[2] Voogt J A, Oke T R. Thermal remote sensing of urban climates[J]. Remote Sensing of Environment, 2003,86(3):370-384.
[3] 李召良, 段四波, 唐伯惠, 等. 热红外地表温度遥感反演方法研究进展[J]. 遥感学报, 2016,20(5):899-920.
Li Z L, Duan S B, Tang B H, et al. Review of methods for land surface temperature derived from thermal infrared remotely sensed data[J]. Journal of Remote Sensing, 2016,20(5):899-920.
[4] 郭晓寅, 程国栋. 遥感技术应用于地表面蒸散发的研究进展[J]. 地球科学进展, 2004,19(1):107-114.
Guo X Y, Cheng G D. Advances in the application of remote sensing to evapotranspiration research[J]. Advance in Earth Sciences, 2004,19(1):107-114.
[5] 张丽华, 陈亚宁, 赵锐锋, 等. 温带荒漠中温度和土壤水分对土壤呼吸的影响[J]. 植物生态学报, 2009,33(5):936-949.
Zhang L H, Chen Y N, Zhao R F, et al. Impact of temperature and soil water content on soil respiration in temperate deserts,China[J]. Chinese Journal of Plant Ecology, 2009,33(5):936-949.
[6] Arnfield A J. Two decades of urban climate research:A review of turbulence,exchanges of energy and water,and the urban heat island[J]. International Journal of Climatology, 2003,23(1):1-26.
[7] Kalma J D, Mcvicar T R, Mccabe M F. Estimating land surface evaporation:A review of methods using remotely sensed surface temperature data[J]. Surveys in Geophysics, 2008,29(4-5):421-469.
[8] Kogan F N. Operational space technology for global vegetation assessment[J]. Bulletin of the American Meteorological Society, 2001,82(9):1949-1964.
[9] Valor E, Caselles V. Mapping land surface emissivity from NDVI:Application to European,African,and South American areas[J]. Remote Sensing of Environment, 1996,57(3):167-184.
[10] Li Z L, Tang B H, Wu H, et al. Satellite-derived land surface temperature:Current status and perspectives[J]. Remote Sensing of Environment, 2013,131(131):14-37.
[11] Wan Z, Zhang Y, Zhang Q, et al. Quality assessment and validation of the modis global land surface temperature[J]. International Journal of Remote Sensing, 2004,25(1), 261-274.
[12] Duan S B, Li Z L. Spatial downscaling of MODIS land surface temperatures using geographically weighted regression:Case study in northern China[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016,54(11):6458-6469.
[13] 郭俊如, 宋军, 鲍献文, 等. 东中国海遥感叶绿素数据重构方法研究[J]. 遥感技术与应用, 2016,31(5):939-949.
Guo J R, Song J, Bao X W, et al. The method study of remote sensing data reconstruction in multi-scale variations of chlorophyll in east China sea[J]. Remote Sensing Technology and Application, 2016,31(5):939-949.
[14] 赵冰, 毛克彪, 蔡玉林, 等. 中国地表温度时空演变规律研究[J]. 国土资源遥感, 2020,32(2):233-240.doi: 10.6046/gtzyyg.2020.02.30.
Zhao B, Mao K B, Cai Y L, et al. Study of the temporal and spatial evolution law of land surface temperature in China[J]. Remote Sensing for Land and Resources, 2020,32(2):233-240.doi: 10.6046/gtzyyg.2020.02.30.
[15] 吴迪, 陈健, 石满, 等. 基于Savitzky-Golay滤波算法的FY-2F地表温度产品时间序列重建[J]. 国土资源遥感, 2019,31(2):59-65.doi: 10.6046/gtzyyg.2019.02.09.
Wu D, Chen J, Shi M, et al. Reconstruction of land surface temperature time-series datasets of FY-2F based on Savitzky-Golay filter[J]. Remote Sensing for Land and Resources, 2019,31(2):59-65.doi: 10.6046/gtzyyg.2019.02.09.
[16] Beckers J M, and Rixen M. EOF calculations and data filling from incomplete oceanographic datasets[J]. Journal of Atmospheric and Oceanic Technology, 2003,20(12):1839-1856.
[17] Gandin L S. Objective analysis of meteorological fields[J]. Israel Program for Scientific Translation,Jerusalem. 1963.
[18] Alvera-Azcárate A, Barth A, Rixen M, et al. Reconstruction of incomplete oceanographic data sets using empirical orthogonal functions:Application to the Adriatic Sea surface temperature[J]. Ocean Modelling, 2005,9(4):325-346.
[19] Alvera-Azcárate A, Barth A, Beckers J M, et al. Multivariate reconstruction of missing data in sea surface temperature,chlorophyll,and wind satellite fields[J]. Journal of Geophysical Research:Oceans, 2007,112(c3).
[20] 窦文洁, 周斌, 蒋锦刚, 等. 基于等纬度DINEOF的遥感SST产品缺失数据重构算法及精度验证分析[J]. 浙江大学学报(理学版), 2015,42(2):205-212.
Dou W J, Zhou B, Jiang J G, et al. Data reconstruction algorithm of remote sensing SST products and accuracy analysis based on the same latitude DINEOF[J]. Journal of Zhejiang University(Science Edition), 2015,42(2):205-212.
[21] 郭海峡, 蔡榕硕, 谭红建. 基于DINEOF方法重构台湾海峡叶绿素a遥感缺失数据的初步研究[J]. 应用海洋学学报, 2016,35(4):550-558.
Guo H X, Cai R S, Tan H J, et al. A preliminary study on missing remote sensing data of Chlorophyll-a in Taiwan Strait and reconstruction by DINEOF method[J]. Journal of Applied Oceanography, 2016,35(4):550-558.
[22] 王跃启, 刘东艳. 基于DINEOF方法的水色遥感数据的重构研究——以黄、渤海区域为例[J]. 遥感信息, 2014,29(5):51-57.
Wang Y Q, Liu D Y. Reconstruction of satellite ocean color data based on DINEOF method:A case study in Bohai and Yellow Sea[J]. Remote Sensing Information, 2014,29(5):51-57.
[23] Zhou W, Peng B, Shi J, et al. Estimating high resolution daily air temperature based on remote sensing products and climate reanalysis datasets over glacierized basins:A case study in the Langtang valley,Nepal[J]. Remote Sensing, 2017,9(9):959.
[1] 马俊俊, 王春磊, 黄晓红. 基于ASTER数据的地表温度遥感反演与产品检验——以黑河流域为例[J]. 自然资源遥感, 2023, 35(1): 198-204.
[2] 毛克彪, 严毅博, 曹萌萌, 袁紫晋, 覃志豪. 北美洲地表温度数据重建及时空变化分析[J]. 自然资源遥感, 2022, 34(4): 203-215.
[3] 伯英杰, 曾业隆, 李国庆, 曹兴文, 姚清秀. 浮岛光伏电场对地表温度空间分布特征的影响[J]. 自然资源遥感, 2022, 34(1): 158-168.
[4] 袁倩颖, 马彩虹, 文琦, 李学梅. 六盘山贫困区生长季植被覆盖变化及其对水热条件的响应[J]. 国土资源遥感, 2021, 33(2): 220-227.
[5] 叶婉桐, 陈一鸿, 陆胤昊, 吴鹏海. 基于GEE的2000—2019年间升金湖湿地不同季节地表温度时空变化及地表类型响应[J]. 国土资源遥感, 2021, 33(2): 228-236.
[6] 范嘉智, 罗宇, 谭诗琪, 马雯, 张弘豪, 刘富来. 基于FY-3C/MWRI的湖南省地表温度遥感反演评价[J]. 国土资源遥感, 2021, 33(1): 249-255.
[7] 赵冰, 毛克彪, 蔡玉林, 孟祥金. 中国地表温度时空演变规律研究[J]. 国土资源遥感, 2020, 32(2): 233-240.
[8] 曹琦, 师满江, 周亮, 王婷, 彭黎君, 郑仕雷. 山地城市裸地时空变化的热环境响应特征研究[J]. 国土资源遥感, 2019, 31(4): 190-198.
[9] 熊俊楠, 李伟, 程维明, 范春捆, 李进, 赵云亮. 高原地区LST空间分异特征及影响因素研究——以桑珠孜区为例[J]. 国土资源遥感, 2019, 31(2): 164-171.
[10] 吴迪, 陈健, 石满, 覃帮勇, 李盛阳. 基于Savitzky-Golay滤波算法的FY-2F地表温度产品时间序列重建[J]. 国土资源遥感, 2019, 31(2): 59-65.
[11] 吴莹, 姜苏麟, 王振会. 无线电频率干扰对MWRI资料反演地表温度的影响[J]. 国土资源遥感, 2018, 30(4): 90-96.
[12] 杨敏, 杨贵军, 王艳杰, 张勇峰, 张智宏, 孙晨红. 北京城市热岛效应时空变化遥感分析[J]. 国土资源遥感, 2018, 30(3): 213-223.
[13] 余健, 姚云军, 赵少华, 贾坤, 张晓通, 赵祥, 孙亮. 基于改进的METRIC模型的农田潜热通量估算[J]. 国土资源遥感, 2018, 30(3): 83-88.
[14] 华俊玮, 祝善友, 张桂欣. 基于随机森林算法的地表温度降尺度研究[J]. 国土资源遥感, 2018, 30(1): 78-86.
[15] 杨敏, 杨贵军, 陈晓宁, 张勇峰, 尤静妮. 基于FSDAF方法融合生成高时空分辨率地表温度[J]. 国土资源遥感, 2018, 30(1): 54-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发