Please wait a minute...
 
国土资源遥感  2021, Vol. 33 Issue (2): 66-74    DOI: 10.6046/gtzyyg.2020207
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于精细模式气溶胶与WRF模式估算PM2.5质量浓度
韦耿(), 侯钰俏, 韩佳媚, 查勇()
南京师范大学地理科学学院,南京 210023
The estimation of PM2.5 mass concentration based on fine-mode aerosol and WRF model
WEI Geng(), HOU Yuqiao, HAN Jiamei, ZHA Yong()
School of Geography Science, Nanjing Normal University, Nanjing 210023, China
全文: PDF(6441 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

将气象要素加入到基于气溶胶光学厚度(aerosol optical depth,AOD)的近地面大气颗粒物浓度估算是目前热门的技术手段之一。获取了江苏省南京市2014年3月—2019年2月期间的AOD,精细模式分数 (fine-mode fraction,FMF)和PM2.5质量浓度数据,并结合天气研究和预报 (weather research and forecast,WRF)模式得到的气象模拟数据,对南京市PM2.5的质量浓度进行反演。结果表明,相比于AOD与PM2.5进行相关性分析,通过FMF校正得到的精细气溶胶光学厚度AODf与PM2.5的相关性分析能够取得更高的拟合系数,R2最高达到0.40。利用随机森林模型,引入含不同高度的气象因子对PM2.5质量浓度建立反演模型,得到的拟合系数与各误差指标均优于仅含近地面气象因子的模型,表明PM2.5质量浓度受到多因子共同作用的影响,能较好地为利用多源数据反演PM2.5质量浓度提供依据和参考。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韦耿
侯钰俏
韩佳媚
查勇
关键词 MODISFMFWRF模式PM2.5质量浓度估算    
Abstract

The addition of meteorological factors to the estimation of near-ground atmospheric particulate concentration based on AOD is one of the most popular techniques nowadays. In this paper, AOD (Aerosol Optical Depth), FMF (Fine-Mode Fraction) and PM2.5mass concentration data from March 2014 to February 2019 in Nanjing were obtained, and the mass concentration of PM2.5 in Nanjing was retrieved in combination with the meteorological simulation data from WRF (Weather Research and Forecast) model. The results show that, compared with correlation between AOD and PM2.5, the correlation analysis of fine aerosol optical depth AODf and PM2.5 obtained by FMF correction can obtain a higher fitting coefficient, and the maximum R2 reaches 0.40. By adding meteorological factors on different heights into random forest model to establish an inversion model for PM2.5 mass concentration, the obtained fitting coefficients and various error indicators are better than those from models with only near-surface meteorological factors, which indicates that the PM2.5 mass concentration is affected by the combined effect of multiple factors, thus the result can provide a basis and reference for inversion of PM2.5 mass concentration by using multi-source data.

Key wordsMODIS    FMF    WRF model    PM2.5    mass concentration estimation
收稿日期: 2020-07-10      出版日期: 2021-07-21
ZTFLH:  P407X87  
基金资助:国家自然科学基金项目“长三角地区气溶胶污染特征与形成机制研究”(41671428)
通讯作者: 查勇
作者简介: 韦 耿(1996-),男,硕士研究生,主要研究方向为大气颗粒物质量浓度估算。Email: 347128908@qq.com
引用本文:   
韦耿, 侯钰俏, 韩佳媚, 查勇. 基于精细模式气溶胶与WRF模式估算PM2.5质量浓度[J]. 国土资源遥感, 2021, 33(2): 66-74.
WEI Geng, HOU Yuqiao, HAN Jiamei, ZHA Yong. The estimation of PM2.5 mass concentration based on fine-mode aerosol and WRF model. Remote Sensing for Land & Resources, 2021, 33(2): 66-74.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2020207      或      https://www.gtzyyg.com/CN/Y2021/V33/I2/66
参数 采用方案
地图投影 Lambert投影
垂直分层嵌套层数 14层
嵌套层数 3层
微物理过程 Lin 方案
积云参数化 Kain-Fritsch 方案
边界层参数化 Mellor-Yamada-Janjic湍流动能方案
陆面过程 Noah 方案
短波辐射 Dudhia 方案
长波辐射 RRTM方案
Tab.1  WRF模式部分参数方案
Fig.1  南京市AOD和PM2.5质量浓度的年均、季均值
Fig.2  AODm与PM2.5相关性
Fig.3  AODf与PM2.5相关性
仅含地面气象因子 包含不同高度气象因子
季节 R2 RMSE MAE MAPE/% R2 RMSE MAE MAPE/%
春季 0.57 14.97 15.56 34.03 0.71 10.03 10.98 28.35
夏季 0.71 11.45 13.50 34.85 0.74 6.83 7.68 23.19
秋季 0.62 18.77 18.52 39.07 0.71 13.27 14.15 38.92
冬季 0.65 20.59 25.51 41.35 0.73 19.92 20.12 37.22
Tab.2  不同季节的多元回归模型
Fig.4  仅含近地面气象因子模型的验证结果
Fig.5-1  包含不同高度气象因子的验证结果
Fig.5-2  包含不同高度气象因子的验证结果
Fig.6  四季不同影响因子对PM2.5质量浓度的影响
[1] Betha R, Behera S, Balasubramanian R. 2013 Southeast Asian smoke haze:Fractionation of particulate-bound elements and associated health risk[J]. Environmental Science & Technology, 2014, 48(8):4327-4335.
doi: 10.1021/es405533d
[2] Peng R D, Bell M L, Geyh A S. Emergency admissions for cardiovascular and respiratory diseases and the chemical composition of fine particle air pollution[J]. Environmental Health Perspectives, 2009, 117(6):957-963.
doi: 10.1289/ehp.0800185
[3] Kloog I, Ridgway B, Koutrakis P, et al. Long and short term exposure to PM2.5 and mortality[J]. Epidemiology, 2013, 24:555-561.
doi: 10.1097/EDE.0b013e318294beaa pmid: 23676266
[4] King M, Kaufman Y, Nakajima T. Remote sensing of tropospheric aerosols from space:Past,present and future[J]. Bulletin of the American Meteorological Society, 1999, 80(11):2229-2259.
doi: 10.1175/1520-0477(1999)080<2229:RSOTAF>2.0.CO;2
[5] Xu X D. Dynamic issues of urban atmospheric pollution models[J]. Journal of Applied Meteorological Science, 2002, 13:1-12.
[6] Xu X D, Shi X H, Zhang S J, et al. Influence domain and climate effect related to aerosol of urban community around Beijing[J]. Chinese Science Bulletin, 2005, 50(22):2522-2530.
[7] Bell M, Ebis K, Peng R. Community-level spatial heterogeneity of chemical constituent levels of fine particulates and implications for epidemiological research[J]. Journal of Exposure Science & Environmental Epidemiology, 2011, 21:372-384.
[8] Luo N, Zhao W, Yan X. Integrated aerosol optical thickness,gaseous pollutants and meteorological parameters to estimate ground PM2.5 concentration[J]. Fresenius Environmental Bulletin, 2014, 23:2567-2577.
[9] Lee K H, Kim Y J, Kim M J. Characteristics of aerosol observed during two severe haze events over Korea in June and October 2004[J]. Atmospheric Environment, 2006, 40:5146-5155.
doi: 10.1016/j.atmosenv.2006.03.050
[10] Lee K H, Kim Y J, Wolfgand H. Sptio-temporal variability of satellite derived aerosol optical thickness over Northeast Asia in 2004[J]. Atmospheric Environment, 2007, 41:3959-3973.
doi: 10.1016/j.atmosenv.2007.01.048
[11] Wang J, Christopher S A. Intercomparison between satellite-derived aerosol optical thickness and PM2.5 mass:Implications for air quality studies[J]. Geophysical Research Letters, 2003, 30(21):2095.
doi: 10.1029/2003GL018174
[12] Engel-Cox J A, Holloman C H, Coutant B W, et al. Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and urban scale air quality[J]. Atmospheric Environment, 2004, 38:2495-2509.
doi: 10.1016/j.atmosenv.2004.01.039
[13] Hutchison K D, Smith S, Faruqui S J. Correlating MODIS aerosol optical thickness data with ground-based PM2.5 observations across Texas for use in a real-time air quality prediction system[J]. Atmospheric Environment, 2005, 39:7190-7203.
doi: 10.1016/j.atmosenv.2005.08.036
[14] Liu Y, Sarnat J A, Kilaru V, et al. Estimating ground-level PM2.5 in the eastern United States using satellite remote sensing[J]. Environmental Science & Technology, 2005, 39:3269-3278.
doi: 10.1021/es049352m
[15] Nicolantonio W D, Cacciari A, Bolzacchini E, et al.MODIS aerosol optical properties over north italy for estimating surface-level PM2.5[C]//Proceedings of Envisat Symposium 2007, Montreux,Switzerland, ESA SP- 636,2007.
[16] Xing Y, Shi W Z, Li Z Q, et al. Satellite-based PM2.5 estimation using fine-mode aerosol optical thickness over China[J]. Atmospheric Environment, 2017, 170:290-302.
doi: 10.1016/j.atmosenv.2017.09.023
[17] 林俊, 刘卫, 李燕, 等. 大气气溶胶粒径分布特征与气象条件的相关性分析[J]. 气象与环境学报, 2009, 25(1):1-5.
Lin J, Liu W, Li Y, et al. Relationship between meteorological conditions and particle size distribution of atmospheric aerosols[J]. Journal of Meteorology and Environment, 2009, 25(1):1-5.
[18] 纪晓璐, 廉丽姝, 周甜甜, 等. 基于MODIS数据的环渤海地区气溶胶时空变化特征分析[J]. 环境污染与防治, 2017, 39(11):1238-1241,1245.
Ji X L, Lian L S, Zhou T T, et al. Temporal and spatial variation characteristics analysis of aerosol around Bohai Sea region based on MODIS data[J]. Environmental Pollution & Control, 2017, 39(11):1238-1241,1245.
[19] Ni X L, Cao C X, Zhou Y K, et al. Spatio-temporal pattern estimation of PM 2.5 in Beijing-Tianjin-Hebei region based on MODIS AOD and meteorological data using the back propagation neural network[J]. Atmosphere, 2018, 105(9):1-14.
[20] 侯俊雄, 李琦, 朱亚杰, 等. 融机器学习与WRF大气模式的PM2.5预报方法[J]. 测绘科学, 2018, 43(2):114-120.
Hou J Y, Li Q, Zhu Y J, et al. PM2.5 forecasting method based on machine learning and WRF hybrid model[J]. Science of Surveying and Mapping, 2018, 43(2):114-120.
[21] 贺军亮, 张淑媛, 李佳, 等. 基于MODIS的城市大气颗粒物污染指数研究[J]. 国土资源遥感, 2016, 28(2):126-131.doi: 10.6046/gtzyyg.2016.02.20.
doi: 10.6046/gtzyyg.2016.02.20
He J L, Zhang S Y, Li J, et al. Particulate matter indices derived from MODIS data for indicating urban air pollution[J]. Remote Sensing for Land and Resources, 2016, 28(2):126-131.doi: 10.6046/gtzyyg.2016.02.20.
doi: 10.6046/gtzyyg.2016.02.20
[22] 王贺锐, 吴彩保. MODIS气溶胶产品在北京监测PM2.5质量浓度中的应用[J]. 科技创新导报, 2016, 13(20):76-78.
Wang H R, Wu C B. Application of MODIS aerosol products in monitoring PM2.5 concentration in Beijing[J]. Science and Technology Innovation Herald, 2016, 13(20):76-78.
[23] Zhang Y, Li Z Q. Remote sensing of atmospheric fine particulate matter (PM2.5) mass concentration near the ground from satellite observation[J]. Remote Sensing of Environment, 2015, 160:252-262.
doi: 10.1016/j.rse.2015.02.005
[24] Melissa S B, David J K. Precipitation simulations using WRF as a nested regional climate model[J]. Journal of Applied Meteorology and Climatology, 2009, 48:2152-2159.
doi: 10.1175/2009JAMC2186.1
[25] 高洋. WRF模式对2008年1月我国南方冻雨极端天气过程的数值模拟研究[D]. 北京:中国气象科学院, 2011.
Gao Y. WRF numerical simulation of freezing rain extreme weather process in southern China in January 2008[D]. Beijing:Chinese Academy of Meteorological Sciences, 2011.
[26] 张晨雷, 陈报章, 王瑾. WRF模式气象数据在遥感反演PM2.5中的应用研究[J]. 地理空间信息, 2018, 16(2):45-47.
Zhang C L, Chen B Z, Wang J. Application of WRF model meteorological data in PM2.5 remote sensing inversion[J]. Geospatial Information, 2018, 16(2):45-47.
[27] 沈雷, 顾芳, 张加宏, 等. 相对湿度对大气气溶胶消光系数的影响[J]. 光散射学报, 2017, 29(3):251-256.
Shen L, Gu F, Zhang J H, et al. The effect of relative humidity on the extinction coefficient of aerosols[J]. The Journal of Light Scattering, 2017, 29(3):251-256.
[28] Tian J, Chen D M. A semi-empirical model for predicting hourly ground-level fine particulate matter (PM2.5) concentration in southern Ontario from satellite remote sensing and ground-based meteorological measurements[J]. Remote Sensing of Environment, 2010, 114(2):221-229.
doi: 10.1016/j.rse.2009.09.011
[1] 方贺, 张育慧, 何月, 李正泉, 樊高峰, 徐栋, 张春阳, 贺忠华. 浙江省植被生态质量时空变化及其驱动因素分析[J]. 自然资源遥感, 2023, 35(2): 245-254.
[2] 毛克彪, 严毅博, 曹萌萌, 袁紫晋, 覃志豪. 北美洲地表温度数据重建及时空变化分析[J]. 自然资源遥感, 2022, 34(4): 203-215.
[3] 左璐, 孙雷刚, 鲁军景, 徐全洪, 刘剑锋, 马晓倩. 基于MODIS的京津冀地区生态质量综合评价及其时空变化监测[J]. 自然资源遥感, 2022, 34(2): 203-214.
[4] 胡盈盈, 戴声佩, 罗红霞, 李海亮, 李茂芬, 郑倩, 禹萱, 李宁. 2001—2015年海南岛橡胶林物候时空变化特征分析[J]. 自然资源遥感, 2022, 34(1): 210-217.
[5] 张爱竹, 王伟, 郑雄伟, 姚延娟, 孙根云, 辛蕾, 王宁, 胡光. 一种基于分层策略的时空融合模型[J]. 自然资源遥感, 2021, 33(3): 18-26.
[6] 韦耿, 侯钰俏, 查勇. 新冠疫情影响下武汉市气溶胶类型变化分析[J]. 自然资源遥感, 2021, 33(3): 238-245.
[7] 陈宝林, 张斌才, 吴静, 李纯斌, 常秀红. 历史平均值法用于MODIS影像像元云补偿——以甘肃省为例[J]. 国土资源遥感, 2021, 33(2): 85-92.
[8] 杨立娟. 基于两层随机森林模型估算中国东部沿海地区的PM2.5浓度[J]. 国土资源遥感, 2020, 32(4): 137-144.
[9] 杨欢, 邓帆, 张佳华, 王雪婷, 马庆晓, 许诺. 基于MODIS EVI的江汉平原油菜和冬小麦种植信息提取研究[J]. 国土资源遥感, 2020, 32(3): 208-215.
[10] 邓刚, 唐志光, 李朝奎, 陈浩, 彭焕华, 王晓茹. 基于MODIS时序数据的湖南省水稻种植面积提取及时空变化分析[J]. 国土资源遥感, 2020, 32(2): 177-185.
[11] 金楷仑, 郝璐. 基于遥感数据与SEBAL模型的江浙沪地区地表蒸散反演[J]. 国土资源遥感, 2020, 32(2): 204-212.
[12] 赵冰, 毛克彪, 蔡玉林, 孟祥金. 中国地表温度时空演变规律研究[J]. 国土资源遥感, 2020, 32(2): 233-240.
[13] 施益强, 邓秋琴, 吴君, 王坚. 厦门市MODIS气溶胶光学厚度与空气质量指数的回归分析[J]. 国土资源遥感, 2020, 32(1): 106-114.
[14] 程宇琪, 王雨晴, 孙静萍, 张成福. 多伦县草原植被覆盖与蒸散量时空变化及其关系[J]. 国土资源遥感, 2020, 32(1): 200-208.
[15] 吴林霖, 官云兰, 李嘉伟, 袁晨鑫, 李睿. 基于MODIS影像喀斯特石漠化状况研究——以贵州省为例[J]. 国土资源遥感, 2019, 31(4): 235-242.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发