Please wait a minute...
 
自然资源遥感  2022, Vol. 34 Issue (4): 203-215    DOI: 10.6046/zrzyyg.2021254
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
北美洲地表温度数据重建及时空变化分析
毛克彪1,2(), 严毅博1, 曹萌萌1, 袁紫晋2, 覃志豪1
1.中国农业科学院农业资源与农业区划研究所呼伦贝尔国家野外观测站,北京 100081
2.宁夏大学物理与电子电气工程学院,银川 750021
Reconstruction of surface temperature data and analysis of spatial and temporal changes in North America
MAO Kebiao1,2(), YAN Yibo1, CAO Mengmeng1, YUAN Zijin2, QIN Zhihao1
1. Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
2. School of Physics and Electronic-Engineering, Ningxia University, Yinchuan 750021, China
全文: PDF(8922 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

地表温度是反映区域自然环境和气候变化的重要指标,高质量的数据对区域地表温度时空变化研究是非常重要的。北美洲近年来的气候变化较为异常,因此研究分析该区域的地表温度具有较强的意义。文章基于MODIS地表温度数据,结合地面站点、邻近像元和海拔数据重建了北美洲2002—2018年的遥感地表温度数据集,并分析了其17 a的地表温度时空变化。重建的地表温度数据覆盖了所有陆地地表,数据验证表明精度在1 ℃左右。经过分析发现: 北美洲17 a间以平均0.02 ℃/a的速度呈现波动增温趋势并在2016年达到历史峰值,此后2 a里地表温度直线下降,这与厄尔尼诺的影响密切相关; 北美洲春秋两季的增温幅度较大,冬夏两季次之; 阿拉斯加北部地区和加利福尼亚半岛区域近年来的增温趋势极为显著; 植被和大气水汽显著地影响着地表温度的变化,40°N以北植被和大气水汽与地表温度呈正相关变化,40°N以南植被和大气水汽与地表温度呈负相关变化。根据北美洲平均地表温度周期波动的变化趋势以及厄尔尼诺的影响,在一定可靠程度上可以预测未来1~2 a整体地表温度变化趋势。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
毛克彪
严毅博
曹萌萌
袁紫晋
覃志豪
关键词 数据重建地表温度MODIS时空变化    
Abstract

Surface temperature is an important indicator that reflects the regional natural environment and climate changes. High-quality data are very valuable for the study of the temporal and spatial changes in regional surface temperature. In recent years, North America has witnessed relatively abnormal climate changes, thus the surface temperature in this region has great study significance. Based on the MODIS surface temperature data, this study reconstructed the remotely sensed surface temperature data set of North America from 2002 to 2018 and analyzed the spatial and temporal changes in surface temperature over the past 17 years. The reconstructed surface temperature data cover all land surfaces of North America and guarantee precision of about 1 ℃. The analysis results are as follows. North America had a fluctuating temperature increase at an average rate of 0.02 ℃/a in the past 17 years. A historical peak in surface temperature increase occurred in 2016, followed by a sharp drop in the following two years, which was closely related to El Nino. In North America, the temperature increase was greater in spring and autumn than in winter and summer. In recent years, northern Alaska and the Baja California peninsula have experienced significant warming. Vegetation and atmospheric water vapor significantly affect the change in surface temperature. Vegetation and atmospheric water vapor are positively correlated with surface temperature in the north of 40°N, while they are negatively correlated in the south of 40°N. The general changing trend of surface temperature in the next 1~2 years can be predicted to a certain degree of reliability according to the periodic fluctuation trend of the average surface temperature in North America and the influence of El Nino.

Key wordsdata reconstruction    surface temperature    MODIS    temporal and spatial changes
收稿日期: 2021-08-16      出版日期: 2022-12-27
ZTFLH:  TP79  
基金资助:国家重点研发计划国际合作项目“全球农业干旱监测研究”(2019YFE0127600);亚太空间合作组织(APSCO)框架项目“全球及重点区域干旱预报与监测”(20220714);风云卫星推进计划2022“风云全天候地表温度时空融合数据集的研制与应用”(2022070712);宁夏科技厅灵活引进人才项目“北斗+土壤水分和植被含水量监测仪器设备研发及应用”(2021RXTDLX14);中央公益事业单位基本科研业务费“高时空分辨率干旱监测关键参数土壤水分反演算法及应用研究”(1610132020014)
作者简介: 毛克彪(1977-),男,研究员,主要从事农业大数据、农业灾害遥感和粮食安全等方面的研究。Email: maokebiao@caas.cn
引用本文:   
毛克彪, 严毅博, 曹萌萌, 袁紫晋, 覃志豪. 北美洲地表温度数据重建及时空变化分析[J]. 自然资源遥感, 2022, 34(4): 203-215.
MAO Kebiao, YAN Yibo, CAO Mengmeng, YUAN Zijin, QIN Zhihao. Reconstruction of surface temperature data and analysis of spatial and temporal changes in North America. Remote Sensing for Natural Resources, 2022, 34(4): 203-215.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2021254      或      https://www.gtzyyg.com/CN/Y2022/V34/I4/203
Fig.1  研究区示意图
类型 数据名称 时间分
辨率
空间分
辨率/(°)
NDVI MOD11C2 月尺度 0.05
SM 被动微波土壤水分 月尺度 0.05
AOD MOD08_M3 月尺度 1
云量 MOD08_M3 月尺度 1
大气水汽含量 MOD08_M3 月尺度 1
Tab.1  其他遥感数据的介绍
Fig.2  数据修复技术流程
Fig.3  重建数据的精度验证
Fig.4  北美洲2002—2018年平均地表温度
Fig.5  北美洲在2002—2018年4个季节的平均地表温度
指标 春季 夏季 秋季 冬季
平均值 1.03 15.72 2.63 -11.62
最大值 37.34 45.55 32.68 31.43
最小值 -36.49 -17.71 -38.82 -49.33
最大温度差 73.83 63.16 70.99 80.76
标准差 16.47 11.15 15.01 17.75
Tab.2  北美洲4个季节平均地表温度的部分统计指标
Fig.6  不同时间维度地表温度的变化趋势
Fig.7  北美洲白天和晚上地表温度与时间变化的皮尔逊系数
Fig.8  北美洲白天和晚上地表温度的年际变化率
Fig.9  北美洲不同季节平均地表温度随时间变化的皮尔逊系数
Fig.10  北美洲不同季节平均地表温度的年际变化率
Fig.11  北美洲年平均地表温度年际变化率及其随时间变化的显著性
Fig.12  地表温度与其他参数的相关系数
指标 NDVI SM AOD 云量 大气水汽含量
平均值 0.43 0.23 0.15 0.30 0.48
最大值 0.98 0.89 0.63 0.89 0.87
Tab.3  5类其他参数的相关系数绝对值统计
Fig.13  2019年北美洲年平均地表温度与各月份平均地表温度的距平值
[1] Anderson M C, Norman J M, Kustas W P, et al. A thermal-based remote sensing technique for routine mapping of land-surface carbon,water and energy fluxes from field to regional scales[J]. Remote Sensing of Environment, 2008, 112:4227-4241.
doi: 10.1016/j.rse.2008.07.009
[2] 唐国利, 任国玉. 近百年中国地表气温变化趋势的再分析[J]. 气候与环境研究, 2005(4):791-798.
Tang G L, Ren G Y. Reanalysis of surface air temperature change of the last 100 years over China[J]. Climatic and Environmental Research, 2005(4):791-798.
[3] Brunsell N A, Gillies R R. Length scale analysis of surface energy fluxes derived from remote sensing[J]. Journal of Hydrometeorology, 2003, 4(6):1212-1219.
doi: 10.1175/1525-7541(2003)004<1212:LSAOSE>2.0.CO;2
[4] 毛克彪, 左志远, 朱高峰, 等. 全球气候和生态系统变化与星体轨道位置变化关系研究[J]. 高技术通讯, 2016, 26(11):890-899.
Mao K B, Zuo Z Y, Zhu G F, et al. Study of the relationship between global climate-ecosystem’s change and planetary orbit position’s change[J]. High Technology Letters, 2016, 26(11):890-899.
[5] 王建凯, 王开存, 王普才. 基于MODIS地表温度产品的北京城市热岛(冷岛)强度分析[J]. 遥感学报, 2007(3):330-339.
Wang J K, Wang K C, Wang P C. Urban heat (or cool) island over Beijing from MODIS land surface temperature[J]. Journal of Remote Sensing, 2007(3):330-339.
[6] Guo J, Mao K, Zhao Y, et al. Impact of climate on food security in Mainland China:A new perspective based on characteristics of major agricultural natural disasters and grain loss[J]. Sustainability, 2019, 869(11):1-25.
[7] Hall D K, Williams R S, Luthcke S B, et al. Greenland ice sheet surface temperature,melt and mass loss:2000—06[J]. Journal of Glaciology, 2008, 54(184):81-93.
doi: 10.3189/002214308784409170
[8] Xia L, Zhao F, Mao K, et al. SPI-based analyses of drought changes over the past 60 years in China’s major crop-growing areas[J]. Remote Sensing, 2018, 171(10):1-15.
[9] Westerling A L. Warming and earlier spring increase western U.S.forest wildfire activity[J]. Science, 2006, 313(5789):940-943.
doi: 10.1126/science.1128834 pmid: 16825536
[10] Ouzounov D, Freund F T. Mid-infrared emission prior to strong earthquakes analyzed by remote sensing data[J]. Advances in Space Research, 2004, 33(3):268-273.
doi: 10.1016/S0273-1177(03)00486-1
[11] 任国玉, 郭军, 徐铭志, 等. 近50年中国地面气候变化基本特征[J]. 气象学报, 2005, 6:942-956.
Ren G Y, Guo J, Xu M Z, et al. Climate change of China’s mainland over the past half century[J]. Acta Meteorologica Sinica, 2005, 6:942-956.
[12] Zhao B, Mao K, Cai Y, et al. A combined Terra and Aqua MODIS land surface temperature and meteorological station data product for China from 2003—2017[J]. Earth System Science Data, 2020, 12:2555-2577.
doi: 10.5194/essd-12-2555-2020
[13] Mao K, Ma Y, Tan X, et al. Global surface temperature change analysis based on MODIS data in recent twelve years[J]. Advance Space Research, 2017, 59:503-512.
doi: 10.1016/j.asr.2016.11.007
[14] Neteler M. Estimating daily land surface temperatures in mountainous environments by reconstructed MODIS LST data[J]. Remote Sensing, 2010, 2(1):333-351.
doi: 10.3390/rs1020333
[15] Shen H, Li X, Cheng Q, et al. Missing information reconstruction of remote sensing data:A technical review[J]. IEEE Geoscience and Remote Sensing Magazine, 2015, 3(3):61-85.
[16] Zhao L, Jin J, Wang S Y, et al. Integration of remote-sensing data with WRF to improve lake-effect precipitation simulations over the Great Lakes region[J]. Journal of Geophysical Research Atmospheres, 2012, 117(d9):1-12.
[17] Mao K, Ma Y, Xia L, et al. Global aerosol change in the last decade:An analysis based on MODIS data[J]. Atmospheric Environment, 2014, 94:680-686.
doi: 10.1016/j.atmosenv.2014.04.053
[18] Cao M, Mao K, Yan Y, et al. A new global gridded sea surface temperature data product based on multisource data[J]. Earth System Science Data, 2021, 13:2111-2134.
doi: 10.5194/essd-13-2111-2021
[19] Kerr Y H, Lagouarde J P, Imbernon J. Accurate land surface temperature retrieval from AVHRR data with use of an improved split window algorithm[J]. Remote Sensing of Environment, 1992, 41:197-209.
doi: 10.1016/0034-4257(92)90078-X
[20] Mao K, Shi J, Li Z, et al. An RM-NN algorithm for retrieving land surface temperature and emissivity from EOS/MODIS data[J]. Journal of Geophysical Research-Atmosphere, 2007, 112(d21):1-17.
[21] Pepin N, Bradley R S, Diaz H F, et al. Elevation-dependent warming in mountain regions of the world[J]. Nature Climate Change, 2015, 5:424-430.
doi: 10.1038/nclimate2563
[22] Halliday W E D. Climate,soils and forests of Canada[J]. Forestry Chronicle, 1950, 26:287-301.
doi: 10.5558/tfc26287-4
[23] Mao K, Qin Z, Shi J, et al. A practical split-window algorithm for retrieving land surface temperature from MODIS data[J]. International Journal of Remote Sensing, 2005, 26:3181-3204.
doi: 10.1080/01431160500044713
[24] Mao K, Shi J, Tang J, et al. A neural network technique for separating land surface emissivity and temperature from ASTER imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(1):200-208.
doi: 10.1109/TGRS.2007.907333
[25] Xia L, Mao K, Ma Y, et al. An algorithm for retrieving land surface temperature using VIIRS data in combination with multi-sensors[J]. Sensors, 2014, 14:21385-21408.
doi: 10.3390/s141121385
[26] Wan Z, Dozier J. A generalized split-window algorithm for retrieving land-surface temperature from space[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(4):892-905.
doi: 10.1109/36.508406
[27] Wan Z, Li Z L. A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(4):980-996.
doi: 10.1109/36.602541
[28] Fang S, Mao K, Xia X, et al. Dataset of daily near-surface air temperature in China from 1979 to 2018[J]. Earth System Science Data, 2022, 14:1413-1432.
doi: 10.5194/essd-14-1413-2022
[29] Wang P, Mao K, Meng F, et al. A daily highest air temperature estimation method and spatial-temporal changes analysis of high temperature in China from 1979 to 2018[J]. Geoscientific Model Development, 2022, 15:6059-6083.
doi: 10.5194/gmd-15-6059-2022
[30] Hansen J, Lebedeff S. Global trends of measured surface air temperature[J]. Journal of Geophysical Research Atmospheres, 1987, 92(d11):13345-13372.
doi: 10.1029/JD092iD11p13345
[31] Julien Y, Sobrino J A, Verhoef W. Changes in land surface temperatures and NDVI values over Europe between 1982 and 1999[J]. Remote Sensing of Environment, 2006, 103(1):43-55.
doi: 10.1016/j.rse.2006.03.011
[32] Wang H, Mao K, Yuan Z, et al. A method for land surface temperature retrieval based on model-data-knowledge-driven and deep learning[J]. Remote Sensing of Environment, 2021, 265:1-19.
[33] Remer L A, Kleidman R G, Levy R C, et al. Global aerosol climatology from the MODIS satellite sensors[J]. Journal of Geophysical Research, 2008, 113(d14):1-18.
[34] Platnick S. The MODIS cloud products:Algorithms and examples from Terra[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(2):459-473.
doi: 10.1109/TGRS.2002.808301
[35] Held I M, Soden B J. Robust responses of the hydrological cycle to global warming[J]. Journal of Climate, 2006, 19(21):5686-5699.
doi: 10.1175/JCLI3990.1
[36] Mao K, Yuan Z, Zuo Z, et al. Changes in global cloud cover based on remote sensing data from 2003 to 2012[J], Chinese Geographical Science, 2019, 29(2):306-315.
doi: 10.1007/s11769-019-1030-6
[37] Yan Y, Mao K, Shi J, et al. Driving forces of land surface temperature anomalous changes in North America in 2002—2018[J]. Scientific Reports, 2020, 6931(10):1-13.
[38] Hinzman L D, Bettez N D, Bolton W R, et al. Evidence and implications of recent climate change in Northern Alaska and other arctic regions[J]. Climatic Change, 2005, 72(3):251-298.
doi: 10.1007/s10584-005-5352-2
[1] 王叶兰, 杨鑫, 郝利娜. 2001—2021年川西高原植被NDVI时空变化及影响因素分析[J]. 自然资源遥感, 2023, 35(3): 212-220.
[2] 方贺, 张育慧, 何月, 李正泉, 樊高峰, 徐栋, 张春阳, 贺忠华. 浙江省植被生态质量时空变化及其驱动因素分析[J]. 自然资源遥感, 2023, 35(2): 245-254.
[3] 虎小强, 杨树文, 闫恒, 薛庆, 张乃心. 基于时序InSAR的新疆阿希矿区地表形变监测与分析[J]. 自然资源遥感, 2023, 35(1): 171-179.
[4] 马俊俊, 王春磊, 黄晓红. 基于ASTER数据的地表温度遥感反演与产品检验——以黑河流域为例[J]. 自然资源遥感, 2023, 35(1): 198-204.
[5] 张祯祺, 蔡惠文, 张平平, 王泽琳, 李婷婷. 基于GEE遥感云平台的三江源植被碳源/汇时空变化研究[J]. 自然资源遥感, 2023, 35(1): 231-242.
[6] 王雅婷, 朱长明, 张涛, 张新, 石智宇. 2002—2020年秦岭—黄淮平原交界带植被物候特征遥感监测分析[J]. 自然资源遥感, 2022, 34(4): 225-234.
[7] 马山木, 甘甫平, 吴怀春, 闫柏琨. ICESat-2数据监测青藏高原湖泊2018—2021年水位变化[J]. 自然资源遥感, 2022, 34(3): 164-172.
[8] 左璐, 孙雷刚, 鲁军景, 徐全洪, 刘剑锋, 马晓倩. 基于MODIS的京津冀地区生态质量综合评价及其时空变化监测[J]. 自然资源遥感, 2022, 34(2): 203-214.
[9] 李伟光, 侯美亭. 植被遥感时间序列数据重建方法简述及示例分析[J]. 自然资源遥感, 2022, 34(1): 1-9.
[10] 伯英杰, 曾业隆, 李国庆, 曹兴文, 姚清秀. 浮岛光伏电场对地表温度空间分布特征的影响[J]. 自然资源遥感, 2022, 34(1): 158-168.
[11] 胡盈盈, 戴声佩, 罗红霞, 李海亮, 李茂芬, 郑倩, 禹萱, 李宁. 2001—2015年海南岛橡胶林物候时空变化特征分析[J]. 自然资源遥感, 2022, 34(1): 210-217.
[12] 范田亿, 张翔, 黄兵, 钱湛, 姜恒. 湘江流域TRMM卫星降水产品降尺度研究与应用[J]. 自然资源遥感, 2021, 33(4): 209-218.
[13] 晋成名, 杨兴旺, 景海涛. 基于RS的陕北地区植被覆盖度变化及驱动力研究[J]. 自然资源遥感, 2021, 33(4): 258-264.
[14] 张爱竹, 王伟, 郑雄伟, 姚延娟, 孙根云, 辛蕾, 王宁, 胡光. 一种基于分层策略的时空融合模型[J]. 自然资源遥感, 2021, 33(3): 18-26.
[15] 杨蕴雪, 张艳芳. 基于空间距离指数的延河流域生态敏感性时空演变特征[J]. 自然资源遥感, 2021, 33(3): 229-237.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发